找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approaches to Probabilistic Model Learning for Mobile Manipulation Robots; Jürgen Sturm Book 2013 Springer-Verlag Berlin Heidelberg 2013 A

[復(fù)制鏈接]
樓主: GLAZE
31#
發(fā)表于 2025-3-26 22:55:20 | 只看該作者
Learning Manipulation Tasks by Demonstration,tential tasks of a manipulation robot beforehand. For example, robotic assistants operating in industrial contexts are frequently faced with changes in the production process. As a consequence, novel manipulation skills become relevant on a regular basis. For this reason, there is a need for solutio
32#
發(fā)表于 2025-3-27 02:35:02 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:10:31 | 只看該作者
https://doi.org/10.1007/978-3-658-02802-2nt in Section 2.2 several measures to evaluate the quality of a model and to select the best one. Finally, we introduce in Section 2.3 Bayesian networks as a tool to factorize high-dimensional learning problems into independent components.
35#
發(fā)表于 2025-3-27 14:17:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:34:55 | 只看該作者
37#
發(fā)表于 2025-3-27 23:45:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:05:35 | 只看該作者
https://doi.org/10.1007/978-3-322-82883-5er. In particular for robotic manipulation tasks, tactile sensing provides another sensor modality that can reveal relevant aspects about the object being manipulated, for example, to infer its identity, pose, and internal state.
39#
發(fā)表于 2025-3-28 08:04:10 | 只看該作者
Meyer-Hentschel Management Consultingn the production process. As a consequence, novel manipulation skills become relevant on a regular basis. For this reason, there is a need for solutions that enable normal users to quickly and intuitively teach new manipulation skills to a robot.
40#
發(fā)表于 2025-3-28 11:00:40 | 只看該作者
Meyer-Hentschel Management Consultingquire that robots function robustly in new situations while they are dealing with considerable amounts of noise and uncertainty. Therefore, the main objective of this work was to develop novel approaches that enable manipulation robots to autonomously acquire the models they need to successfully implement their service tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山丹县| 剑川县| 桓仁| 抚州市| 江永县| 蒲江县| 南投市| 府谷县| 莎车县| 巴东县| 密山市| 三台县| 垣曲县| 准格尔旗| 于田县| 蒙自县| 桦南县| 广西| 宿松县| 台北县| 阿荣旗| 靖安县| 德江县| 哈密市| 石林| 北京市| 洮南市| 新田县| 康马县| 盖州市| 嵊泗县| 永定县| 汤阴县| 双峰县| 宜昌市| 临邑县| 乳山市| 辰溪县| 平昌县| 本溪市| 宝鸡市|