找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Neural Networks with TensorFlow 2; API Oriented Deep Le Orhan Gazi Yal??n Book 2021 Orhan Gazi Yal??n 2021 Deep Learning.TensorFlow

[復(fù)制鏈接]
查看: 12533|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:28:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applied Neural Networks with TensorFlow 2
期刊簡(jiǎn)稱API Oriented Deep Le
影響因子2023Orhan Gazi Yal??n
視頻videohttp://file.papertrans.cn/160/159992/159992.mp4
發(fā)行地址Differentiate supervised, unsupervised, and reinforcement machine learning.Serve trained deep learning models on the web with the Flask lightweight framework.Build a shallow neural network
圖書封面Titlebook: Applied Neural Networks with TensorFlow 2; API Oriented Deep Le Orhan Gazi Yal??n Book 2021 Orhan Gazi Yal??n 2021 Deep Learning.TensorFlow
影響因子Implement deep learning applications using TensorFlow while learning the “why” through in-depth conceptual explanations.? .You’ll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy—others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.?.You‘ll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you’ll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs.. Finally, move into theoretical applications and unsupervised learning with auto-encoders and rein
Pindex Book 2021
The information of publication is updating

書目名稱Applied Neural Networks with TensorFlow 2影響因子(影響力)




書目名稱Applied Neural Networks with TensorFlow 2影響因子(影響力)學(xué)科排名




書目名稱Applied Neural Networks with TensorFlow 2網(wǎng)絡(luò)公開度




書目名稱Applied Neural Networks with TensorFlow 2網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Neural Networks with TensorFlow 2被引頻次




書目名稱Applied Neural Networks with TensorFlow 2被引頻次學(xué)科排名




書目名稱Applied Neural Networks with TensorFlow 2年度引用




書目名稱Applied Neural Networks with TensorFlow 2年度引用學(xué)科排名




書目名稱Applied Neural Networks with TensorFlow 2讀者反饋




書目名稱Applied Neural Networks with TensorFlow 2讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:15:23 | 只看該作者
地板
發(fā)表于 2025-3-22 06:40:47 | 只看該作者
Natural Language Processing,ch, cognition, and their interactions. In this chapter, we briefly cover the history of NLP, the differences between rule-based NLP and statistical NLP, and the major NLP methods and techniques. We finally conduct a case study on NLP to prepare you for real-world problems.
5#
發(fā)表于 2025-3-22 10:03:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:03:32 | 只看該作者
Entwicklungen in der Unfallchirurgieementary libraries for certain tasks, especially for data preparation. Although the potential libraries you may use in a deep learning pipeline may vary to a great extent, the most popular complementary libraries are as follows:
7#
發(fā)表于 2025-3-22 20:13:47 | 只看該作者
8#
發(fā)表于 2025-3-23 00:49:26 | 只看該作者
tweight framework.Build a shallow neural networkImplement deep learning applications using TensorFlow while learning the “why” through in-depth conceptual explanations.? .You’ll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several tec
9#
發(fā)表于 2025-3-23 01:40:58 | 只看該作者
10#
發(fā)表于 2025-3-23 05:51:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漾濞| 崇礼县| 三穗县| 武威市| 灌阳县| 涪陵区| 嵩明县| 将乐县| 信丰县| 龙井市| 呈贡县| 堆龙德庆县| 都匀市| 班玛县| 灵川县| 肇州县| 柘城县| 温州市| 鲁甸县| 南江县| 汉中市| 金山区| 东乌珠穆沁旗| 澎湖县| 瓦房店市| 平邑县| 石柱| 托克逊县| 邻水| 山阴县| 肃宁县| 霸州市| 康马县| 广河县| 邵东县| 宣威市| 怀宁县| 无极县| 邛崃市| 山阳县| 建湖县|