找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Neural Networks with TensorFlow 2; API Oriented Deep Le Orhan Gazi Yal??n Book 2021 Orhan Gazi Yal??n 2021 Deep Learning.TensorFlow

[復(fù)制鏈接]
查看: 12536|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:28:55 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Applied Neural Networks with TensorFlow 2
期刊簡稱API Oriented Deep Le
影響因子2023Orhan Gazi Yal??n
視頻videohttp://file.papertrans.cn/160/159992/159992.mp4
發(fā)行地址Differentiate supervised, unsupervised, and reinforcement machine learning.Serve trained deep learning models on the web with the Flask lightweight framework.Build a shallow neural network
圖書封面Titlebook: Applied Neural Networks with TensorFlow 2; API Oriented Deep Le Orhan Gazi Yal??n Book 2021 Orhan Gazi Yal??n 2021 Deep Learning.TensorFlow
影響因子Implement deep learning applications using TensorFlow while learning the “why” through in-depth conceptual explanations.? .You’ll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy—others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.?.You‘ll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you’ll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs.. Finally, move into theoretical applications and unsupervised learning with auto-encoders and rein
Pindex Book 2021
The information of publication is updating

書目名稱Applied Neural Networks with TensorFlow 2影響因子(影響力)




書目名稱Applied Neural Networks with TensorFlow 2影響因子(影響力)學科排名




書目名稱Applied Neural Networks with TensorFlow 2網(wǎng)絡(luò)公開度




書目名稱Applied Neural Networks with TensorFlow 2網(wǎng)絡(luò)公開度學科排名




書目名稱Applied Neural Networks with TensorFlow 2被引頻次




書目名稱Applied Neural Networks with TensorFlow 2被引頻次學科排名




書目名稱Applied Neural Networks with TensorFlow 2年度引用




書目名稱Applied Neural Networks with TensorFlow 2年度引用學科排名




書目名稱Applied Neural Networks with TensorFlow 2讀者反饋




書目名稱Applied Neural Networks with TensorFlow 2讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:15:23 | 只看該作者
地板
發(fā)表于 2025-3-22 06:40:47 | 只看該作者
Natural Language Processing,ch, cognition, and their interactions. In this chapter, we briefly cover the history of NLP, the differences between rule-based NLP and statistical NLP, and the major NLP methods and techniques. We finally conduct a case study on NLP to prepare you for real-world problems.
5#
發(fā)表于 2025-3-22 10:03:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:03:32 | 只看該作者
Entwicklungen in der Unfallchirurgieementary libraries for certain tasks, especially for data preparation. Although the potential libraries you may use in a deep learning pipeline may vary to a great extent, the most popular complementary libraries are as follows:
7#
發(fā)表于 2025-3-22 20:13:47 | 只看該作者
8#
發(fā)表于 2025-3-23 00:49:26 | 只看該作者
tweight framework.Build a shallow neural networkImplement deep learning applications using TensorFlow while learning the “why” through in-depth conceptual explanations.? .You’ll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several tec
9#
發(fā)表于 2025-3-23 01:40:58 | 只看該作者
10#
發(fā)表于 2025-3-23 05:51:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商南县| 泽库县| 土默特右旗| 雅江县| 綦江县| 木里| 屏山县| 邻水| 灌南县| 尤溪县| 泽普县| 许昌县| 嘉义市| 垫江县| 大石桥市| 两当县| 临沂市| 邢台县| 津南区| 成都市| 镇安县| 清新县| 望都县| 唐河县| 手游| 绍兴县| 盐边县| 乌兰浩特市| 清丰县| 彭州市| 黄龙县| 井冈山市| 特克斯县| 吴江市| 濮阳县| 香港 | 来宾市| 南乐县| 老河口市| 太谷县| 汤原县|