找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Lie Groups to Differential Equations; Peter J. Olver Textbook 19861st edition Springer-Verlag New York Inc. 1986 Applicati

[復(fù)制鏈接]
樓主: FARCE
21#
發(fā)表于 2025-3-25 06:50:52 | 只看該作者
Generalized Symmetries,it appears that the possession of an infinite number of such symmetries is a characterizing property of “solvable” equations, such as the Korteweg-de Vries equation, which have “soliton” solutions or can be linearized either directly or via inverse scattering.
22#
發(fā)表于 2025-3-25 10:38:31 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:46 | 只看該作者
https://doi.org/10.1007/978-3-663-16016-8equations for which the Lagrangian viewpoint, even if applicable, no longer is appropriate or natural to the problem. In this case, the Hamiltonian formulation of systems of evolution equations assumes the natural variational role for the system.
24#
發(fā)表于 2025-3-25 15:58:53 | 只看該作者
0072-5285 ial equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie gr
25#
發(fā)表于 2025-3-25 23:04:41 | 只看該作者
Finite-Dimensional Hamiltonian Systems, of this vast subject, namely the interplay between symmetry groups, conservation laws and reduction in order for systems in Hamiltonian form. The Hamiltonian version of Noether’s theorem has a particularly attractive geometrical flavour, which remains somewhat masked in our previous Lagrangian framework.
26#
發(fā)表于 2025-3-26 03:28:07 | 只看該作者
Hamiltonian Methods for Evolution Equations,equations for which the Lagrangian viewpoint, even if applicable, no longer is appropriate or natural to the problem. In this case, the Hamiltonian formulation of systems of evolution equations assumes the natural variational role for the system.
27#
發(fā)表于 2025-3-26 04:57:05 | 只看該作者
28#
發(fā)表于 2025-3-26 11:34:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:12 | 只看該作者
https://doi.org/10.1007/978-1-4684-0274-2Applications; Equations; Groups; Lie; group theory
30#
發(fā)表于 2025-3-26 17:51:42 | 只看該作者
Springer-Verlag New York Inc. 1986
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 驻马店市| 民勤县| 化德县| 抚宁县| 乾安县| 晴隆县| 麦盖提县| 建德市| 南涧| 文成县| 宝应县| 丽江市| 辛集市| 巴中市| 澄城县| 临沭县| 抚宁县| 西乌| 安阳市| 万安县| 思茅市| 句容市| 塔河县| 萨迦县| 手游| 五家渠市| 玛纳斯县| 襄樊市| 南乐县| 元江| 柘荣县| 新泰市| 阜城县| 兴海县| 吉木乃县| 瑞安市| 巴林左旗| 元朗区| 宜宾市| 车险|