找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Lie Groups to Differential Equations; Peter J. Olver Textbook 19861st edition Springer-Verlag New York Inc. 1986 Applicati

[復(fù)制鏈接]
查看: 42361|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:46:29 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Applications of Lie Groups to Differential Equations
影響因子2023Peter J. Olver
視頻videohttp://file.papertrans.cn/160/159482/159482.mp4
學(xué)科分類Graduate Texts in Mathematics
圖書封面Titlebook: Applications of Lie Groups to Differential Equations;  Peter J. Olver Textbook 19861st edition Springer-Verlag New York Inc. 1986 Applicati
影響因子This book is devoted to explaining a wide range of applications of con- tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre- scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detai
Pindex Textbook 19861st edition
The information of publication is updating

書目名稱Applications of Lie Groups to Differential Equations影響因子(影響力)




書目名稱Applications of Lie Groups to Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Applications of Lie Groups to Differential Equations網(wǎng)絡(luò)公開度




書目名稱Applications of Lie Groups to Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applications of Lie Groups to Differential Equations被引頻次




書目名稱Applications of Lie Groups to Differential Equations被引頻次學(xué)科排名




書目名稱Applications of Lie Groups to Differential Equations年度引用




書目名稱Applications of Lie Groups to Differential Equations年度引用學(xué)科排名




書目名稱Applications of Lie Groups to Differential Equations讀者反饋




書目名稱Applications of Lie Groups to Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:21:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:56 | 只看該作者
https://doi.org/10.1007/978-3-663-16029-8. Section 2.2 investigates the precise definition of a symmetry group of a system of differential equations, which requires knowledge of how the group elements actually transform the solutions. The corresponding infinitesimal method rests on the important concept of “prolonging” a group action to th
地板
發(fā)表于 2025-3-22 06:53:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:02:02 | 只看該作者
0072-5285 pplications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detai978-1-4684-0274-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
6#
發(fā)表于 2025-3-22 16:00:51 | 只看該作者
7#
發(fā)表于 2025-3-22 18:21:19 | 只看該作者
Group-Invariant Solutions,hly states that the solutions which are invariant under a given r-parameter symmetry group of the system can all be found by solving a system of differential equations involving . fewer independent variables than the original system. In particular, if the number of parameters is one less than the nu
8#
發(fā)表于 2025-3-23 00:47:26 | 只看該作者
9#
發(fā)表于 2025-3-23 05:14:05 | 只看該作者
10#
發(fā)表于 2025-3-23 07:17:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥德县| 罗田县| 兰溪市| 金山区| 温州市| 屯留县| 双鸭山市| 江口县| 札达县| 大洼县| 吴忠市| 黄浦区| 南岸区| 朔州市| 双峰县| 杭州市| 冷水江市| 佛教| 苏州市| 蓬溪县| 乌海市| 蓬莱市| 防城港市| 乡宁县| 磐安县| 福清市| 桐城市| 祁门县| 永安市| 五莲县| 阳西县| 卓尼县| 南开区| 天镇县| 永春县| 巴林左旗| 诸城市| 洮南市| 京山县| 翁源县| 个旧市|