找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Lie Groups to Differential Equations; Peter J. Olver Textbook 19861st edition Springer-Verlag New York Inc. 1986 Applicati

[復(fù)制鏈接]
樓主: FARCE
21#
發(fā)表于 2025-3-25 06:50:52 | 只看該作者
Generalized Symmetries,it appears that the possession of an infinite number of such symmetries is a characterizing property of “solvable” equations, such as the Korteweg-de Vries equation, which have “soliton” solutions or can be linearized either directly or via inverse scattering.
22#
發(fā)表于 2025-3-25 10:38:31 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:46 | 只看該作者
https://doi.org/10.1007/978-3-663-16016-8equations for which the Lagrangian viewpoint, even if applicable, no longer is appropriate or natural to the problem. In this case, the Hamiltonian formulation of systems of evolution equations assumes the natural variational role for the system.
24#
發(fā)表于 2025-3-25 15:58:53 | 只看該作者
0072-5285 ial equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie gr
25#
發(fā)表于 2025-3-25 23:04:41 | 只看該作者
Finite-Dimensional Hamiltonian Systems, of this vast subject, namely the interplay between symmetry groups, conservation laws and reduction in order for systems in Hamiltonian form. The Hamiltonian version of Noether’s theorem has a particularly attractive geometrical flavour, which remains somewhat masked in our previous Lagrangian framework.
26#
發(fā)表于 2025-3-26 03:28:07 | 只看該作者
Hamiltonian Methods for Evolution Equations,equations for which the Lagrangian viewpoint, even if applicable, no longer is appropriate or natural to the problem. In this case, the Hamiltonian formulation of systems of evolution equations assumes the natural variational role for the system.
27#
發(fā)表于 2025-3-26 04:57:05 | 只看該作者
28#
發(fā)表于 2025-3-26 11:34:55 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:12 | 只看該作者
https://doi.org/10.1007/978-1-4684-0274-2Applications; Equations; Groups; Lie; group theory
30#
發(fā)表于 2025-3-26 17:51:42 | 只看該作者
Springer-Verlag New York Inc. 1986
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼结县| 永福县| 竹溪县| 东海县| 三门县| 即墨市| 丹江口市| 凤凰县| 台北县| 米林县| 三明市| 林甸县| 文化| 杭锦旗| 伊吾县| 惠来县| 清流县| 双柏县| 海城市| 乌拉特后旗| 舒兰市| 景东| 九龙县| 富裕县| 镇坪县| 孙吴县| 湘潭县| 石景山区| 会东县| 兴国县| 高陵县| 开鲁县| 武陟县| 磐石市| 容城县| 宿松县| 昌宁县| 彝良县| 息烽县| 麻江县| 宕昌县|