找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies; L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal

[復制鏈接]
樓主: ISSUE
21#
發(fā)表于 2025-3-25 03:39:09 | 只看該作者
Generalized KP Hierarchy,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
22#
發(fā)表于 2025-3-25 07:49:55 | 只看該作者
https://doi.org/10.1007/978-3-540-78289-6 start for most of the material presented in this book. We do not develop a full-scale formalism, but rather show the connections of the Hirota bilinear identity to the context of boundary problems for the ˉ?-operator in the unit disc (or, more generally, some set of domains of the complex plane). T
23#
發(fā)表于 2025-3-25 14:21:31 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:43 | 只看該作者
25#
發(fā)表于 2025-3-25 22:58:32 | 只看該作者
Discrete-Time Neural Observers,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
26#
發(fā)表于 2025-3-26 02:17:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:10:36 | 只看該作者
28#
發(fā)表于 2025-3-26 11:36:20 | 只看該作者
https://doi.org/10.1007/978-94-011-4495-7Complex analysis; functional equation; mathematical physics; partial differential equation; topological
29#
發(fā)表于 2025-3-26 15:20:51 | 只看該作者
30#
發(fā)表于 2025-3-26 20:36:20 | 只看該作者
Discrete-Time Neural Observers,The main objects studied in this book are the generalized Kadomtsev-Petviashvili (KP) hierarchy and generalized multicomponent KP hierarchy, which unite several different types of continuous and discrete integrable systems connected with the standard KP and multicomponent KP hierarchies.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-11-2 13:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大冶市| 青岛市| 建瓯市| 湘潭市| 寻乌县| 明溪县| 互助| 大姚县| 炉霍县| 西乌珠穆沁旗| 寿阳县| 惠水县| 永清县| 孝昌县| 麻栗坡县| 五河县| 井研县| 洪洞县| 平果县| 九龙城区| 虞城县| 蓬溪县| 冷水江市| 祁连县| 昌平区| 淮安市| 安图县| 舒兰市| 泗水县| 青川县| 开封市| 于都县| 萝北县| 确山县| 定陶县| 阿巴嘎旗| 邹城市| 阳春市| 宜黄县| 龙泉市| 辽阳县|