找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies; L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal

[復(fù)制鏈接]
樓主: ISSUE
11#
發(fā)表于 2025-3-23 10:09:22 | 只看該作者
Book 1999e of the a-dressing method is suitable for applications to integrable nonlinear PDEs, integrable nonlinear discrete equations, and, as recently discovered, for t.he applications of integrable systems to continuous and discret.e geometry. The primary motivation of the author was to formalize the appr
12#
發(fā)表于 2025-3-23 16:50:47 | 只看該作者
he language of the a-dressing method is suitable for applications to integrable nonlinear PDEs, integrable nonlinear discrete equations, and, as recently discovered, for t.he applications of integrable systems to continuous and discret.e geometry. The primary motivation of the author was to formalize the appr978-94-010-5922-0978-94-011-4495-7
13#
發(fā)表于 2025-3-23 19:05:57 | 只看該作者
14#
發(fā)表于 2025-3-23 22:21:42 | 只看該作者
Rational Loops and Integrable Discrete Equations. I: Zero Local Indices,unit disc, with the dynamics induced by the subgroup of rational loops of the group Γ., where Γ. is defined as a group of analytic loops having no zeros outside the unit circle and equal to 1 at infinity. We will investigate in detail the equations corresponding to the set of different loops with on
15#
發(fā)表于 2025-3-24 04:48:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:40:19 | 只看該作者
Generalized KP Hierarchy,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
17#
發(fā)表于 2025-3-24 11:40:19 | 只看該作者
18#
發(fā)表于 2025-3-24 17:37:26 | 只看該作者
19#
發(fā)表于 2025-3-24 22:59:57 | 只看該作者
20#
發(fā)表于 2025-3-25 01:38:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石门县| 延寿县| 祁门县| 徐汇区| 井陉县| 克什克腾旗| 盐津县| 台安县| 沅江市| 桐梓县| 大余县| 木兰县| 江陵县| 山东| 昌平区| 儋州市| 宝山区| 南澳县| 阿克| 南岸区| 昔阳县| 金华市| 克什克腾旗| 黑水县| 浪卡子县| 鹰潭市| 潮安县| 岐山县| 定边县| 辛集市| 新平| 无极县| 铜鼓县| 松潘县| 南召县| 南澳县| 武义县| 岳西县| 南丹县| 德庆县| 浠水县|