找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ

[復(fù)制鏈接]
樓主: Intermediary
41#
發(fā)表于 2025-3-28 15:20:30 | 只看該作者
42#
發(fā)表于 2025-3-28 20:58:37 | 只看該作者
Analysis and Geometry978-3-319-17443-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
43#
發(fā)表于 2025-3-29 00:41:34 | 只看該作者
https://doi.org/10.1007/978-3-319-20651-6ased on the notion introduced in (Bahouri, Trends Math pp 1–15 (2013), [.]) of being .-oscillating with respect to a scale. The relevance of this theory is illustrated on several examples related to Orlicz spaces.
44#
發(fā)表于 2025-3-29 03:25:46 | 只看該作者
https://doi.org/10.1007/978-1-4471-7332-8we ask whether such a holomorphic function can be uniformly approximated on smaller balls by functions that are holomorphic on the entire space. This turns out to be a subtle (open) question, whose (partial) resolution in the past 15 years played a central role in deeper investigations in complex analysis in Banach spaces.
45#
發(fā)表于 2025-3-29 07:24:32 | 只看該作者
46#
發(fā)表于 2025-3-29 13:18:57 | 只看該作者
47#
發(fā)表于 2025-3-29 16:31:53 | 只看該作者
A Cauchy-Kovalevsky Theorem for Nonlinear and Nonlocal Equations,locally in time and globally in space. Furthemore, an estimate for the analytic lifespan is provided. To prove these results, the equation is written as a nonlocal autonomous differential equation on a scale of Banach spaces and then a version of the abstract Cauchy-Kovalevsky theorem is applied, wh
48#
發(fā)表于 2025-3-29 23:45:11 | 只看該作者
49#
發(fā)表于 2025-3-29 23:59:03 | 只看該作者
On Microlocal Regularity for Involutive Systems of Complex Vector Fields of Tube Type in ,,l subellipticity (hence microlocal hypoellipticity) and maximal estimates for the systems first studied by F. Treves in (Treves, Ann. Math. .(2) (1976) and .(2) (1981), [.]) for which he gave a necessary condition for microlocal hypoellipticity. After him, many mathematicians studied such systems in
50#
發(fā)表于 2025-3-30 06:50:09 | 只看該作者
Non-closed Range Property for the Cauchy-Riemann Operator,sary and sufficient conditions for the . closed range property for . on bounded Lipschitz domains in . with connected complement. It is proved for the Hartogs triangle that . does not have closed range for (0, 1)-forms smooth up?to the boundary, even though it has closed range in the weak . sense. A
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝感市| 南皮县| 铜川市| 南乐县| 浦城县| 辽阳县| 莎车县| 赣榆县| 轮台县| 防城港市| 阿拉尔市| 兴文县| 嘉禾县| 北海市| 老河口市| 济源市| 临高县| 荆州市| 西贡区| 利川市| 江城| 五河县| 台南县| 定南县| 大城县| 汤阴县| 黄大仙区| 南昌市| 云南省| 洛阳市| 马龙县| 白河县| 芜湖县| 南澳县| 崇州市| 通河县| 吉安市| 枣阳市| 宁德市| 辽源市| 齐齐哈尔市|