找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ

[復制鏈接]
查看: 39636|回復: 58
樓主
發(fā)表于 2025-3-21 16:07:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Analysis and Geometry
期刊簡稱MIMS-GGTM, Tunis, Tu
影響因子2023Ali Baklouti,Aziz El Kacimi,Nordine Mir
視頻videohttp://file.papertrans.cn/157/156217/156217.mp4
發(fā)行地址Covers important topics of contemporary interest.Mainly focused on the most recent developments in analysis and geometry.Provides a valuable contribution to the mathematical literature.Includes supple
學科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ
影響因子.This book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry..
Pindex Conference proceedings 2015
The information of publication is updating

書目名稱Analysis and Geometry影響因子(影響力)




書目名稱Analysis and Geometry影響因子(影響力)學科排名




書目名稱Analysis and Geometry網(wǎng)絡公開度




書目名稱Analysis and Geometry網(wǎng)絡公開度學科排名




書目名稱Analysis and Geometry被引頻次




書目名稱Analysis and Geometry被引頻次學科排名




書目名稱Analysis and Geometry年度引用




書目名稱Analysis and Geometry年度引用學科排名




書目名稱Analysis and Geometry讀者反饋




書目名稱Analysis and Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:50:40 | 只看該作者
2194-1009 ize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry..978-3-319-36885-6978-3-319-17443-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
板凳
發(fā)表于 2025-3-22 01:15:45 | 只看該作者
地板
發(fā)表于 2025-3-22 06:18:43 | 只看該作者
Quasicrystals and Control Theory,rounded on a theorem on trigonometric sums proved by Arne Beurling. This will be our first example. The second example goes the other way around. A problem on trigonometric sums is solved using tools from control theory. Frontiers are erased as Baouendi wished.
5#
發(fā)表于 2025-3-22 09:01:20 | 只看該作者
6#
發(fā)表于 2025-3-22 14:21:00 | 只看該作者
Digital Receiver/Exciter Design,tisfies a strong general type condition that is related to a certain jet semistability property of the tangent bundle?.. We then give a sufficient criterion for the Kobayashi hyperbolicity of an arbitrary directed variety (.,?.).
7#
發(fā)表于 2025-3-22 18:27:28 | 只看該作者
https://doi.org/10.1007/978-1-4471-5267-5 Hartogs triangle that . does not have closed range for (0, 1)-forms smooth up?to the boundary, even though it has closed range in the weak . sense. An example is given to show that . might not have closed range in . on a Stein domain in complex manifold.
8#
發(fā)表于 2025-3-22 23:15:11 | 只看該作者
Towards the Green-Griffiths-Lang Conjecture,tisfies a strong general type condition that is related to a certain jet semistability property of the tangent bundle?.. We then give a sufficient criterion for the Kobayashi hyperbolicity of an arbitrary directed variety (.,?.).
9#
發(fā)表于 2025-3-23 03:31:01 | 只看該作者
Non-closed Range Property for the Cauchy-Riemann Operator, Hartogs triangle that . does not have closed range for (0, 1)-forms smooth up?to the boundary, even though it has closed range in the weak . sense. An example is given to show that . might not have closed range in . on a Stein domain in complex manifold.
10#
發(fā)表于 2025-3-23 06:39:28 | 只看該作者
Conference proceedings 2015d away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
偏关县| 宁夏| 攀枝花市| 西贡区| 阿克| 河北区| 封丘县| 微山县| 丹阳市| 义乌市| 海晏县| 滨州市| 台湾省| 赤水市| 太湖县| 巴林右旗| 玉田县| 台山市| 马边| 鄂伦春自治旗| 仁布县| 莱芜市| 聂拉木县| 建瓯市| 酒泉市| 印江| 大埔区| 即墨市| 安龙县| 偏关县| 杭锦旗| 闵行区| 张家港市| 凤冈县| 乌鲁木齐县| 临汾市| 伊金霍洛旗| 屏东市| 大城县| 沾化县| 五大连池市|