找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ

[復(fù)制鏈接]
樓主: Intermediary
41#
發(fā)表于 2025-3-28 15:20:30 | 只看該作者
42#
發(fā)表于 2025-3-28 20:58:37 | 只看該作者
Analysis and Geometry978-3-319-17443-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
43#
發(fā)表于 2025-3-29 00:41:34 | 只看該作者
https://doi.org/10.1007/978-3-319-20651-6ased on the notion introduced in (Bahouri, Trends Math pp 1–15 (2013), [.]) of being .-oscillating with respect to a scale. The relevance of this theory is illustrated on several examples related to Orlicz spaces.
44#
發(fā)表于 2025-3-29 03:25:46 | 只看該作者
https://doi.org/10.1007/978-1-4471-7332-8we ask whether such a holomorphic function can be uniformly approximated on smaller balls by functions that are holomorphic on the entire space. This turns out to be a subtle (open) question, whose (partial) resolution in the past 15 years played a central role in deeper investigations in complex analysis in Banach spaces.
45#
發(fā)表于 2025-3-29 07:24:32 | 只看該作者
46#
發(fā)表于 2025-3-29 13:18:57 | 只看該作者
47#
發(fā)表于 2025-3-29 16:31:53 | 只看該作者
A Cauchy-Kovalevsky Theorem for Nonlinear and Nonlocal Equations,locally in time and globally in space. Furthemore, an estimate for the analytic lifespan is provided. To prove these results, the equation is written as a nonlocal autonomous differential equation on a scale of Banach spaces and then a version of the abstract Cauchy-Kovalevsky theorem is applied, wh
48#
發(fā)表于 2025-3-29 23:45:11 | 只看該作者
49#
發(fā)表于 2025-3-29 23:59:03 | 只看該作者
On Microlocal Regularity for Involutive Systems of Complex Vector Fields of Tube Type in ,,l subellipticity (hence microlocal hypoellipticity) and maximal estimates for the systems first studied by F. Treves in (Treves, Ann. Math. .(2) (1976) and .(2) (1981), [.]) for which he gave a necessary condition for microlocal hypoellipticity. After him, many mathematicians studied such systems in
50#
發(fā)表于 2025-3-30 06:50:09 | 只看該作者
Non-closed Range Property for the Cauchy-Riemann Operator,sary and sufficient conditions for the . closed range property for . on bounded Lipschitz domains in . with connected complement. It is proved for the Hartogs triangle that . does not have closed range for (0, 1)-forms smooth up?to the boundary, even though it has closed range in the weak . sense. A
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
炉霍县| 犍为县| 东台市| 老河口市| 章丘市| 芦溪县| 通化市| 崇左市| 莲花县| 崇明县| 从江县| 镇坪县| 谷城县| 根河市| 天气| 卓尼县| 社旗县| 宁国市| 石渠县| 沙河市| 浏阳市| 科技| 屯昌县| 湄潭县| 睢宁县| 静安区| 林芝县| 昂仁县| 嘉兴市| 定兴县| 左贡县| 天水市| 威宁| 于都县| 五家渠市| 冷水江市| 黑河市| 清水县| 苗栗市| 天镇县| 姚安县|