找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ

[復(fù)制鏈接]
樓主: Intermediary
21#
發(fā)表于 2025-3-25 04:19:32 | 只看該作者
22#
發(fā)表于 2025-3-25 10:18:50 | 只看該作者
https://doi.org/10.1007/978-0-85729-802-7imply connected .-dimensional compact manifold with a pseudoconvex Mizohata structure is equivalent the standard Mizohata structure on the sphere .. If an .-dimensional connected compact manifold with a nontrivial abelian fundamental group carries a pseudoconvex Mizohata structure, then it is equiva
23#
發(fā)表于 2025-3-25 14:41:47 | 只看該作者
Logarithmic Littlewood-Paley Decomposition and Applications to Orlicz Spaces,ased on the notion introduced in (Bahouri, Trends Math pp 1–15 (2013), [.]) of being .-oscillating with respect to a scale. The relevance of this theory is illustrated on several examples related to Orlicz spaces.
24#
發(fā)表于 2025-3-25 15:59:39 | 只看該作者
25#
發(fā)表于 2025-3-25 21:31:32 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:15 | 只看該作者
27#
發(fā)表于 2025-3-26 08:00:08 | 只看該作者
https://doi.org/10.1007/978-3-030-82036-7Assume that . and . are two smooth bounded pseudoconvex domains in . that intersect (real) transversely, and that . is a domain (i.e. is connected). If the .-Neumann operators on . and on . are compact, then so is the .-Neumann operator on .. The corresponding result holds for the .-Neumann operators on .-forms on domains in ..
28#
發(fā)表于 2025-3-26 11:08:08 | 只看該作者
https://doi.org/10.1007/978-3-319-20651-6We survey aspects of CR complexity for maps between spheres and hyperquadrics, provide some new interpretations of the maps found by Lebl and Reiter, and indicate how group-invariance fit into the story.
29#
發(fā)表于 2025-3-26 15:46:51 | 只看該作者
30#
發(fā)表于 2025-3-26 18:05:35 | 只看該作者
Digital Receiver/Exciter Design,We study the microlocal analyticity and smoothness for the solutions of a class of first order complex nonlinear partial differential equations of the form ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金堂县| 泰安市| 浦县| 牡丹江市| 依兰县| 宜州市| 象山县| 高平市| 社旗县| 贡山| 鞍山市| 永清县| SHOW| 大竹县| 莒南县| 余干县| 龙游县| 大同市| 会泽县| 满城县| 陆川县| 吉隆县| 恭城| 苍山县| 台前县| 馆陶县| 临泽县| 康平县| 晴隆县| 元氏县| 扶沟县| 通城县| 象山县| 张家港市| 皋兰县| 皮山县| 调兵山市| 新晃| 盖州市| 波密县| 甘德县|