找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Isogeometric Approach to Beam Structures; Bridging the Classic Buntara S. Gan Book 2018 Springer International Publishing AG 2018 Beam e

[復(fù)制鏈接]
樓主: 女性
21#
發(fā)表于 2025-3-25 04:53:57 | 只看該作者
Numerical Integration, a line. In the finite element formulation of general beam element, we will deal with curvilinear coordinate, Jacobian operator, and curvature of a general curved beam element where the integration must be done numerically. To stick with the most basic concepts of beam element formulation using nume
22#
發(fā)表于 2025-3-25 10:23:53 | 只看該作者
Finite Element Formulation of Beam Elements,ed on the Euler-Bernoulli and Timoshenko theories. The kinematic assumptions, governing equations via Hamilton’s principle and matrix formulations by using shape functions, are described in detail. In constructing the beam element formulations, the shape functions which are derived from the homogene
23#
發(fā)表于 2025-3-25 13:54:40 | 只看該作者
Isogeometric Approach to Beam Element,S functions as either the geometry or the shape functions to various types of beam formulations on a plane is highlighted in detail and accompanied by MATLAB program lists. This chapter will use the program lists and concept of the NURBS from Chap. 1. The numerical integration introduced in Chap. 2
24#
發(fā)表于 2025-3-25 17:51:59 | 只看該作者
Condensation Method, Inevitably, the computing efforts are increasing exponentially with the higher degree of real geometry to be taken into design analyses. The idea of condensing the increasing number of degrees of freedom using Isogeometric modeling is the utmost important for beam analysis practitioners. The formul
25#
發(fā)表于 2025-3-25 22:36:49 | 只看該作者
Free Curved Beam Element Examples,e least element number which is necessary. The numerical solutions for the examples in static and free vibration problems are presented to show the effectiveness of the NURBS functions in modeling free curved beams.
26#
發(fā)表于 2025-3-26 02:55:40 | 只看該作者
Book 2018 conventional two-node beam elements. In this volume, the author defines the Buntara Condensation Formulation: a unique formulation in condensing the dynamic equilibrium equation for beam structures, suitable for reducing the number of unlimited dynamic equations necessary to yield a classic two-nod
27#
發(fā)表于 2025-3-26 06:16:53 | 只看該作者
Representation of Curves on a Plane,. The objective of this chapter is to bring the reader to understand the concept of the nonuniform rational B-spline (NURBS) which is the basis foundation for the construction of beam element formulations in the Isogeometric approach.
28#
發(fā)表于 2025-3-26 11:58:46 | 只看該作者
Isogeometric Approach to Beam Element,will be adopted in constructing the beam element matrices from the NURBS functions. Based on the beam theories developed in Chap. 3, the implementation of the isogeometric approach to beam element will be discussed.
29#
發(fā)表于 2025-3-26 14:23:09 | 只看該作者
https://doi.org/10.1007/978-3-642-51407-4. The objective of this chapter is to bring the reader to understand the concept of the nonuniform rational B-spline (NURBS) which is the basis foundation for the construction of beam element formulations in the Isogeometric approach.
30#
發(fā)表于 2025-3-26 17:12:54 | 只看該作者
Die kulturelle Bedeutung von Bildernwill be adopted in constructing the beam element matrices from the NURBS functions. Based on the beam theories developed in Chap. 3, the implementation of the isogeometric approach to beam element will be discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四会市| 武乡县| 陵水| 万年县| 徐闻县| 宝鸡市| 天等县| 南和县| 江门市| 武强县| 河曲县| 当涂县| 崇义县| 陈巴尔虎旗| 大邑县| 资源县| 九寨沟县| 晋江市| 河津市| 白城市| 新竹市| 岗巴县| 兴宁市| 青龙| 常山县| 大姚县| 右玉县| 香河县| 凯里市| 汉阴县| 金坛市| 万山特区| 瓦房店市| 白朗县| 巴南区| 新乡县| 湖北省| 波密县| 同德县| 土默特左旗| 基隆市|