找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Isogeometric Approach to Beam Structures; Bridging the Classic Buntara S. Gan Book 2018 Springer International Publishing AG 2018 Beam e

[復(fù)制鏈接]
樓主: 女性
31#
發(fā)表于 2025-3-27 00:33:09 | 只看該作者
32#
發(fā)表于 2025-3-27 01:48:34 | 只看該作者
Condensation Method,om common beam element could ease practitioners to adopt. This new condensation method is discussed in detail and provided by MATLAB function list. The condensation method is applied to the same examples of the beam by using NURBS Chap. . to show its effectiveness.
33#
發(fā)表于 2025-3-27 06:31:37 | 只看該作者
Book 2018geometrical data into the conventional FE beam element codes. The book proposes a new reduction method where the beam element can be treated as under the conventional beam element theory that has only two nodes at both ends..
34#
發(fā)表于 2025-3-27 12:25:55 | 只看該作者
which the beam element can be treated as a conventional beam.This book proposes a novel, original condensation method to beam formulation based on the isogeometric approach to reducing the degrees of freedom to conventional two-node beam elements. In this volume, the author defines the Buntara Conde
35#
發(fā)表于 2025-3-27 16:40:33 | 只看該作者
https://doi.org/10.1007/978-3-642-51407-4neral curved beam element where the integration must be done numerically. To stick with the most basic concepts of beam element formulation using numerical integration, we will focus our description on a one-dimensional integration using the Gauss-Legendre quadrature method.
36#
發(fā)表于 2025-3-27 17:53:40 | 只看該作者
https://doi.org/10.1007/978-3-642-51407-4using shape functions, are described in detail. In constructing the beam element formulations, the shape functions which are derived from the homogeneous governing equations lead to high-accuracy beam analyses. The theories discussed and derived herewith will be used in the subsequent chapters when we deal with the Isogeometric approach to beams.
37#
發(fā)表于 2025-3-27 23:37:38 | 只看該作者
38#
發(fā)表于 2025-3-28 04:39:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:49:21 | 只看該作者
10樓
40#
發(fā)表于 2025-3-28 12:00:43 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳西县| 延川县| 沛县| 莱州市| 贵州省| 罗田县| 建阳市| 额尔古纳市| 北流市| 璧山县| 东宁县| 白银市| 尼勒克县| 彭州市| 葵青区| 萝北县| 寻甸| 新宁县| 苏尼特右旗| 玛纳斯县| 苍山县| 遵义市| 布拖县| 开阳县| 平舆县| 桂林市| 郯城县| 博野县| 盘锦市| 微山县| 茌平县| 漳平市| 五大连池市| 荃湾区| 阳西县| 即墨市| 克山县| 阿拉尔市| 金塔县| 铜川市| 永城市|