找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Modern Enumerative Geometry; Andrea T. Ricolfi Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: ergonomics
41#
發(fā)表于 2025-3-28 18:28:20 | 只看該作者
42#
發(fā)表于 2025-3-28 19:15:08 | 只看該作者
Background Material,o sketch the algebraic definition of Chern classes, and conclude the chapter with a brief overview on representable functors, that will be needed to define fine moduli spaces and universal families. By . we will always mean an algebraically closed field. Most of the time in later chapters, we will s
43#
發(fā)表于 2025-3-29 00:10:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:50:23 | 只看該作者
,The Atiyah–Bott Localisation Formula, Vainsencher (Mat Contemp 20:1–70, 2001) and Anderson (Introduction to equivariant cohomology in algebraic geometry. Contributions to algebraic geometry, European Mathematical Society, Zürich, EMS Series of Congress Reports, 2012). 16th School of Algebra, Part I (Brasília, 2000). We note that the re
45#
發(fā)表于 2025-3-29 07:32:51 | 只看該作者
Applications of the Localisation Formula, Contemp 20:1–70, 2001) was of great inspiration for the first three sections in this chapter, and we take the opportunity to refer the reader to loc. cit. for more examples of application of the localisation formula (upgraded to equivariant Chow theory) in enumerative geometry.
46#
發(fā)表于 2025-3-29 11:34:48 | 只看該作者
The Toy Model for the Virtual Class and Its Localisation,from (see Remark 10.1.15). This construction has historically two approaches: that of Li–Tian (J Am Math Soc 11(1):119–174, 1998) and that of Behrend–Fantechi (Invent Math 128(1):45–88, 1997). In this chapter we shall explicitly construct the perfect obstruction theory on a scheme of the form .?=?.(
47#
發(fā)表于 2025-3-29 16:09:23 | 只看該作者
,DT/PT Correspondence and a Glimpse of Gromov–Witten Theory, and Pandharipande–Thomas invariants. This relation (Theorem 12.1.1) was proved by Bridgeland (J Am Math Soc 24(4):969–998, 2011) and Toda (J Am Math Soc 23(4):1119–1157, 2010). The classical setup, summarised in the next section, involves a . Calabi–Yau 3-fold. In Sect. 12.2 we will exploit virtual
48#
發(fā)表于 2025-3-29 21:59:43 | 只看該作者
49#
發(fā)表于 2025-3-30 01:53:42 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛纳斯县| 东安县| 北安市| 肇州县| 丘北县| 三门峡市| 浠水县| 云浮市| 蒙山县| 尤溪县| 屏东市| 胶南市| 新绛县| 三原县| 建德市| 兴宁市| 都兰县| 自治县| 顺义区| 铜陵市| 中方县| 武胜县| 贺兰县| 卓尼县| 容城县| 福安市| 青神县| 长武县| 万山特区| 谢通门县| 山东省| 濮阳市| 随州市| 信丰县| 卓尼县| 思南县| 曲靖市| 崇左市| 厦门市| 慈溪市| 崇礼县|