找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Modern Enumerative Geometry; Andrea T. Ricolfi Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: ergonomics
11#
發(fā)表于 2025-3-23 10:24:49 | 只看該作者
12#
發(fā)表于 2025-3-23 17:14:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:07 | 只看該作者
14#
發(fā)表于 2025-3-24 01:15:41 | 只看該作者
Equivariant Cohomology,n: Algebraic .-theory (Seattle, WA, 1997). Proc. Sympos. Pure Math., vol. 67, pp. 249–281. Amer. Math. Soc., Providence, 1999) and Edidin and Graham (Amer J Math 120(3), 619–636, 1998) for extensions from cohomology to Chow, and see also Ellingsrud and Str?mme (J Amer Math Soc 9(1):175–193, 1996) fo
15#
發(fā)表于 2025-3-24 03:00:56 | 只看該作者
Background Material,o sketch the algebraic definition of Chern classes, and conclude the chapter with a brief overview on representable functors, that will be needed to define fine moduli spaces and universal families. By . we will always mean an algebraically closed field. Most of the time in later chapters, we will set .
16#
發(fā)表于 2025-3-24 09:11:23 | 只看該作者
Applications of the Localisation Formula, Contemp 20:1–70, 2001) was of great inspiration for the first three sections in this chapter, and we take the opportunity to refer the reader to loc. cit. for more examples of application of the localisation formula (upgraded to equivariant Chow theory) in enumerative geometry.
17#
發(fā)表于 2025-3-24 12:08:52 | 只看該作者
18#
發(fā)表于 2025-3-24 16:45:26 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:44 | 只看該作者
20#
發(fā)表于 2025-3-25 01:37:25 | 只看該作者
Andrea T. RicolfiIllustrates a sophisticated theory starting from elementary examples.Useful guide towards research in several areas of math.Contains background results hard to find in specialised papers
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿松县| 西乡县| 无棣县| 临潭县| 武平县| 大竹县| 绥中县| 循化| 台山市| 射阳县| 庆安县| 满洲里市| 板桥市| 荔浦县| 裕民县| 咸丰县| 股票| 休宁县| 莱西市| 措勤县| 定远县| 宝山区| 临澧县| 日喀则市| 怀宁县| 华安县| 平度市| 天等县| 沙雅县| 关岭| 镇宁| 北票市| 调兵山市| 锦州市| 黄浦区| 石家庄市| 蛟河市| 鄂伦春自治旗| 绥芬河市| 霞浦县| 桦甸市|