找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: An Introduction to Computational Origami; Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.

[復(fù)制鏈接]
樓主: 馬用
31#
發(fā)表于 2025-3-27 00:02:22 | 只看該作者
Origami Geometry based on Huzita-Justin Folds,ometric objects. We show that Huzita-Justin’s basic folds can construct them without such tools but by hand. We reformulate Huzita-Justin’s fold rules by giving them precise conditions for their use. We prove that we can decide whether, by the reformulated rules, we can perform a fold as specified b
32#
發(fā)表于 2025-3-27 02:29:59 | 只看該作者
33#
發(fā)表于 2025-3-27 07:41:46 | 只看該作者
Verification of Origami Geometry,During the construction, the logical formulas that describe the geometric configuration are formed and stored. We use those formulas for verifying the geometric properties of the constructed origami. In this chapter, we detail the process of verification. We give three examples of the application of
34#
發(fā)表于 2025-3-27 11:57:52 | 只看該作者
Polygonal Knot Origami,n adequate length, we can construct the simplest knot by three folds. We can make the shape of the knot a regular pentagon if we fasten the knot rigidly. We analyze the knot fold formally so that we can construct it rigorously and verify the correctness of the construction by algebraic methods. In p
35#
發(fā)表于 2025-3-27 17:28:16 | 只看該作者
Abstract Origami,ewriting system (O, ?), where O is the set of abstract origamis and ? is a binary relation on O, that models a fold. An abstract origami is a structure (∏,?~?,??), where ∏ is a set of faces constituting an origami, and?~?and???are binary relations on ∏, each denoting adjacency and superposition rela
36#
發(fā)表于 2025-3-27 20:16:43 | 只看該作者
9樓
37#
發(fā)表于 2025-3-27 23:31:07 | 只看該作者
10樓
38#
發(fā)表于 2025-3-28 04:51:22 | 只看該作者
10樓
39#
發(fā)表于 2025-3-28 07:41:02 | 只看該作者
10樓
40#
發(fā)表于 2025-3-28 11:56:58 | 只看該作者
10樓
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林市| 鄂温| 兴国县| 沽源县| 肃北| 赤水市| 益阳市| 正蓝旗| 宜州市| 合肥市| 尤溪县| 上犹县| 苏尼特右旗| 云安县| 浦县| 永修县| 龙海市| 张家川| 石门县| 年辖:市辖区| 宜城市| 虞城县| 普陀区| 北宁市| 安平县| 库车县| 盐源县| 奉化市| 马公市| 宁波市| 武强县| 于都县| 广宁县| 孟津县| 温泉县| 西平县| 聂荣县| 蒲江县| 磐安县| 渑池县| 图木舒克市|