找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Computational Origami; Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.

[復制鏈接]
查看: 27148|回復: 39
樓主
發(fā)表于 2025-3-21 19:24:49 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Computational Origami
影響因子2023Tetsuo Ida
視頻videohttp://file.papertrans.cn/156/155186/155186.mp4
發(fā)行地址Treats origami as basic geometrical operations that are represented and manipulated symbolically and graphically by computers.Includes detailed explanations how classical and modern geometrical proble
學科分類Texts & Monographs in Symbolic Computation
圖書封面Titlebook: An Introduction to Computational Origami;  Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.
影響因子.In this book, origami is treated as a set of basic geometrical?objects?that are represented and manipulated symbolically and graphically by computers. Focusing on how classical and modern geometrical problems are solved by means of origami, the book explains the methods not only with mathematical rigor but also by appealing to our scientific intuition, combining mathematical formulas and graphical images to do so. In turn, it discusses the verification of origami using computer software and symbolic computation tools. The binary code for the origami software, called Eos and created by the author, is also provided..
Pindex Book 2020
The information of publication is updating

書目名稱An Introduction to Computational Origami影響因子(影響力)




書目名稱An Introduction to Computational Origami影響因子(影響力)學科排名




書目名稱An Introduction to Computational Origami網(wǎng)絡公開度




書目名稱An Introduction to Computational Origami網(wǎng)絡公開度學科排名




書目名稱An Introduction to Computational Origami被引頻次




書目名稱An Introduction to Computational Origami被引頻次學科排名




書目名稱An Introduction to Computational Origami年度引用




書目名稱An Introduction to Computational Origami年度引用學科排名




書目名稱An Introduction to Computational Origami讀者反饋




書目名稱An Introduction to Computational Origami讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:16 | 只看該作者
Tetsuo IdaTreats origami as basic geometrical operations that are represented and manipulated symbolically and graphically by computers.Includes detailed explanations how classical and modern geometrical proble
板凳
發(fā)表于 2025-3-22 00:43:20 | 只看該作者
地板
發(fā)表于 2025-3-22 07:44:32 | 只看該作者
5#
發(fā)表于 2025-3-22 10:54:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:44 | 只看該作者
https://doi.org/10.1007/978-3-319-59189-6paper fold; Euclid and Origami geometry; Groebner basis; automated theorem proving; origami geometry
7#
發(fā)表于 2025-3-22 17:28:11 | 只看該作者
Springer Nature Switzerland AG 2020
8#
發(fā)表于 2025-3-22 21:47:56 | 只看該作者
Die Sichtbarmachung des Unsichtbarenhools. We construct those shapes usually by a straightedge and a compass, so-called a Euclidian tool of construction. We explain the set of the basic fold rules and show, by examples, that it is as powerful as a straightedge and a compass. Furthermore, we show that the set of basic fold rules enable
9#
發(fā)表于 2025-3-23 02:37:06 | 只看該作者
https://doi.org/10.1007/978-3-663-04661-5ometric objects. We show that Huzita-Justin’s basic folds can construct them without such tools but by hand. We reformulate Huzita-Justin’s fold rules by giving them precise conditions for their use. We prove that we can decide whether, by the reformulated rules, we can perform a fold as specified b
10#
發(fā)表于 2025-3-23 05:53:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
扶余县| 泗洪县| 北宁市| 崇信县| 大新县| 新和县| 凭祥市| 霍城县| 富锦市| 太原市| 华安县| 高青县| 正镶白旗| 九台市| 遂昌县| 北辰区| 金堂县| 中阳县| 虎林市| 山丹县| 河北省| 临潭县| 肥东县| 甘德县| 仁寿县| 鹿泉市| 黄浦区| 肃南| 宝兴县| 金川县| 犍为县| 渭南市| 龙江县| 福贡县| 镇江市| 东阿县| 璧山县| 顺义区| 馆陶县| 宁安市| 东辽县|