找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Learning Theory; 17th International C José L. Balcázar,Philip M. Long,Frank Stephan Conference proceedings 2006 Springer-Verlag

[復(fù)制鏈接]
樓主: Bush
11#
發(fā)表于 2025-3-23 12:52:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:25 | 只看該作者
The Complexity of Learning SUBSEQ (,)following inductive inference problem: given .(.), .(0), .(1), .(00), ... learn, in the limit, a DFA for SUBSEQ(.). We consider this model of learning and the variants of it that are usually studied in inductive inference: anomalies, mindchanges, and teams.
13#
發(fā)表于 2025-3-23 20:43:05 | 只看該作者
Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Datative data with mind change bound between .. and .. We give a very tight bound on the mind change complexity based on the length of the constant segments and the size of the alphabet of the pattern languages. This is, to the authors’ knowledge, the first time a natural class of languages has been sho
14#
發(fā)表于 2025-3-24 01:44:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:23:17 | 只看該作者
Iterative Learning from Positive Data and Negative Counterexamplesture with a teacher (oracle) if it is a subset of the target language (and if it is not, then it receives a negative counterexample), and uses only limited long-term memory (incorporated in conjectures). Three variants of this model are compared: when a learner receives least negative counterexample
16#
發(fā)表于 2025-3-24 10:04:08 | 只看該作者
17#
發(fā)表于 2025-3-24 11:56:45 | 只看該作者
Risk-Sensitive Online Learninghe best trade-off between rewards and .. Motivated by finance applications, we consider two common measures balancing returns and risk: the . [9] and the . criterion of Markowitz [8]. We first provide negative results establishing the impossibility of no-regret algorithms under these measures, thus
18#
發(fā)表于 2025-3-24 17:55:17 | 只看該作者
Leading Strategies in Competitive On-Line Predictiony prediction strategies admits a “l(fā)eading prediction strategy”, which not only asymptotically performs at least as well as any continuous limited-memory strategy but also satisfies the property that the excess loss of any continuous limited-memory strategy is determined by how closely it imitates th
19#
發(fā)表于 2025-3-24 22:32:06 | 只看該作者
Solving Semi-infinite Linear Programs Using Boosting-Like Methodsg. .=?. In the finite case the constraints can be described by a matrix with . rows and . columns that can be used to directly solve the LP. In semi-infinite linear programs (SILPs) the constraints are often given in a functional form depending on . or implicitly defined, for instance by the outcome of another algorithm.
20#
發(fā)表于 2025-3-25 00:51:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍梧县| 大新县| 民权县| 绵竹市| 宁南县| 宜春市| 界首市| 宕昌县| 广昌县| 元朗区| 绥滨县| 卫辉市| 榆林市| 阳高县| 敦煌市| 平乡县| 江都市| 贵溪市| 石门县| 岑巩县| 三江| 镇赉县| 光山县| 上林县| 台江县| SHOW| 江孜县| 连江县| 滦平县| 安龙县| 长沙县| 浠水县| 广汉市| 翁源县| 武安市| 正定县| 望都县| 澳门| 南平市| 弋阳县| 抚州市|