找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Game Theory; 8th International Sy Martin Hoefer Conference proceedings 2015 Springer-Verlag Berlin Heidelberg 2015 Social netwo

[復制鏈接]
樓主: 欺騙某人
41#
發(fā)表于 2025-3-28 17:31:57 | 只看該作者
42#
發(fā)表于 2025-3-28 18:48:08 | 只看該作者
Die Ostdeutschen in ausgew?hlten Karikaturenes a fraction proportional to her bids. We quantify the inefficiency of Nash equilibria by studying the Price of Anarchy (PoA) of the induced game under complete and incomplete information. When agents’ valuations are concave, we show that the Bayesian Nash equilibria can be arbitrarily inefficient,
43#
發(fā)表于 2025-3-29 01:18:20 | 只看該作者
44#
發(fā)表于 2025-3-29 04:59:14 | 只看該作者
Martin HoeferIncludes supplementary material:
45#
發(fā)表于 2025-3-29 09:23:17 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/152942.jpg
46#
發(fā)表于 2025-3-29 11:26:38 | 只看該作者
47#
發(fā)表于 2025-3-29 18:15:01 | 只看該作者
48#
發(fā)表于 2025-3-29 22:49:59 | 只看該作者
Stable Matchings with Ties, Master Preference Lists, and Matroid Constraintsints for hospitals are generalized to matroid constraints. By generalizing the algorithms of O’Malley for the hospitals/residents problem with ties and master lists, we give polynomial-time algorithms for deciding whether there exist a super-stable matching and a strongly stable matching in our model, and finding such matchings if they exist.
49#
發(fā)表于 2025-3-30 01:00:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:31:49 | 只看該作者
Deprivation, Inequality and Polarizationand satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1)?be blocked by as few as possible pairs, or (2)?violate as few as possible constraints on restricted pairs..Our main theorems prove that for the (bipartite) stable marria
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
许昌市| 诸城市| 康保县| 漾濞| 松滋市| 仁化县| 阳春市| 朔州市| 定兴县| 且末县| 木里| 宿松县| 鹤岗市| 安义县| 岳阳县| 朝阳县| 定州市| 武山县| 柳林县| 米脂县| 崇阳县| 容城县| 江阴市| 彰化县| 忻城县| 集贤县| 周口市| 高淳县| 濉溪县| 乡城县| 大姚县| 左权县| 万山特区| 潜山县| 长丰县| 安丘市| 德保县| 剑阁县| 墨江| 南涧| 朔州市|