找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Foundations of Robotics V; Jean-Daniel Boissonnat,Joel Burdick,Seth Hutchinso Book 2004 Springer-Verlag Berlin Heidelberg 2004

[復(fù)制鏈接]
樓主: 使無罪
41#
發(fā)表于 2025-3-28 16:35:09 | 只看該作者
42#
發(fā)表于 2025-3-28 21:37:16 | 只看該作者
Springer Tracts in Advanced Roboticshttp://image.papertrans.cn/a/image/152933.jpg
43#
發(fā)表于 2025-3-28 23:00:22 | 只看該作者
44#
發(fā)表于 2025-3-29 05:00:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:06:36 | 只看該作者
,Interessenkollisionen und Innenverh?ltnis,Motion planning was traditionally studied in the area of robotics. In recent years the techniques are increasingly used in virtual environments and games. In many such applications entities move around and their motion must be planned. In particular, we can distinguish the following types of motion:
46#
發(fā)表于 2025-3-29 11:43:43 | 只看該作者
Algorithms for Motion and Navigation in Virtual Environments and Games,Motion planning was traditionally studied in the area of robotics. In recent years the techniques are increasingly used in virtual environments and games. In many such applications entities move around and their motion must be planned. In particular, we can distinguish the following types of motion:
47#
發(fā)表于 2025-3-29 17:00:10 | 只看該作者
A Delaunay Approach to Interactive Cutting in Triangulated Surfaces,triangle meshes in two dimensions, and then generalize it to three dimensional curved surfaces, where bifurcations and annihilations of incisions may occur. This method could be applied to simulating surgery of membrane-like structures, such as veins or intestine.
48#
發(fā)表于 2025-3-29 23:47:05 | 只看該作者
49#
發(fā)表于 2025-3-30 01:45:46 | 只看該作者
50#
發(fā)表于 2025-3-30 05:51:05 | 只看該作者
https://doi.org/10.1007/978-3-7091-7494-4-dimensional planning problem in reparameterizable configuration spaces. In the past, simulated annealing and other energy minimization methods have been used to find knot untangling paths. We develop a probabilistic planner that is capable of untangling knots described by over four hundred variable
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安新县| 图木舒克市| 泰安市| 福安市| 临沭县| 鲁山县| 卢龙县| 岳普湖县| 赤峰市| 保靖县| 和政县| 射阳县| 阜宁县| 漯河市| 天气| 怀宁县| 黄山市| 正阳县| 宣武区| 涡阳县| 平南县| 迁安市| 长阳| 抚松县| 岳阳县| 安龙县| 黎川县| 芜湖县| 开平市| 泽库县| 寻甸| 二连浩特市| 萍乡市| 天等县| 称多县| 托克逊县| 姜堰市| 桃园县| 香河县| 阿巴嘎旗| 广德县|