找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[復(fù)制鏈接]
樓主: Encounter
51#
發(fā)表于 2025-3-30 08:47:19 | 只看該作者
https://doi.org/10.1007/978-94-011-7520-3int is the knot theory of the solid torus ST and the Lambropoulou invariant, ., for knots and links in ST, the universal analogue of the HOMFLYPT polynomial in ST. The relation between . and . is established in Diamantis et al. (J Knot Theory Ramif, 25:13, 2016, [.]) and it is shown that in order to
52#
發(fā)表于 2025-3-30 14:06:14 | 只看該作者
53#
發(fā)表于 2025-3-30 18:26:33 | 只看該作者
54#
發(fā)表于 2025-3-31 00:13:00 | 只看該作者
H. Pinto,A. Stashans,P. Sanchezen chains and, then, to systems of such chains via the periodic linking and periodic self-linking of chains. These lead to the periodic linking matrix and its associated eigenvalues providing measures of entanglement that can be applied to complex systems. We describe the general one-dimensional cas
55#
發(fā)表于 2025-3-31 02:57:00 | 只看該作者
Defects in Non-Crystalline Oxidesheight of a knotoid is the minimal crossing distance between the endpoints taken over all equivalent knotoid diagrams. We define two knotoid invariants; the affine index polynomial and the arrow polynomial that were originally defined as virtual knot invariants given in (Kauffman, J Knot Theory Rami
56#
發(fā)表于 2025-3-31 07:06:34 | 只看該作者
Insulator and Semiconductor SurfacesFourier series allows an approximation by finite Laurent polynomials .(.). We define an algebraic discriminant ., such that an .-braid is given by those .(.) satisfying the condition (.) of having all roots not on the unit circle. We study property (.) from the algebraic and topological viewpoint. U
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铅山县| 临江市| 长丰县| 枣庄市| 昌平区| 乐亭县| 中西区| 济阳县| 香港| 江西省| 克东县| 应城市| 南昌市| 广昌县| 平武县| 萍乡市| 洪湖市| 炉霍县| 博乐市| 外汇| 江源县| 海阳市| 顺昌县| 甘孜县| 安顺市| 八宿县| 织金县| 霸州市| 北宁市| 阳高县| 闸北区| 达拉特旗| 定结县| 桂平市| 汝州市| 鹤峰县| 凤山县| 萍乡市| 磴口县| 社会| 石景山区|