找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[復(fù)制鏈接]
樓主: Encounter
31#
發(fā)表于 2025-3-27 00:01:52 | 只看該作者
Defects in Non-Crystalline Oxidesf 21(3), 37, 2012) [.], (Kauffman, J Knot Theory Ramif 22(4), 30, 2013) [.], respectively, but here are described entirely in terms of knotoids in .. We reprise here our results given in (Gügümcü, Kauffman, Eur J Combin 65C, 186–229, 2017) [.] that show that both polynomials give a lower bound for the height of knotoids.
32#
發(fā)表于 2025-3-27 05:11:39 | 只看該作者
https://doi.org/10.1007/978-94-011-7520-3he construction via the isomorphism, we reduce the number of invariants to study, given the number of connected components of a link. In particular, if the link is a classical link with . components, we show that . invariants generate the whole family.
33#
發(fā)表于 2025-3-27 08:02:54 | 只看該作者
https://doi.org/10.1007/978-94-011-7520-3, presented in Diamantis and Lambropoulou (J Pure Appl Algebra, 220(2):577–605, 2016, [.]). The solution of this infinite system of equations is very technical and is the subject of a sequel work (Diamantis and Lambropoulou, The HOMFLYPT skein module of the lens spaces .(.,?1) via braids, in preparation, [.]).
34#
發(fā)表于 2025-3-27 13:15:20 | 只看該作者
35#
發(fā)表于 2025-3-27 13:39:40 | 只看該作者
36#
發(fā)表于 2025-3-27 18:09:50 | 只看該作者
On the Framization of the Hecke Algebra of Type ,he other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou. The purpose of this paper is to show the main concepts and results of both framizations, giving emphasis to the second one, and to provide a preliminary comparison of the invariants constructed from both framizations.
37#
發(fā)表于 2025-3-27 22:04:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:36:57 | 只看該作者
39#
發(fā)表于 2025-3-28 07:15:15 | 只看該作者
40#
發(fā)表于 2025-3-28 12:21:09 | 只看該作者
https://doi.org/10.1007/978-94-011-7520-3We study the algebraic structure and the representation theory of the Yokonuma–Hecke algebra of type ., its generalisations, the affine and cyclotomic Yokonuma–Hecke algebras, and its Temperley–Lieb type quotients, the Yokonuma–Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and the Complex Reflection Temperley–Lieb algebra.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南川市| 漠河县| 柳江县| 琼中| 吴桥县| 平度市| 大同县| 内丘县| 吴忠市| 金寨县| 积石山| 德阳市| 卢龙县| 常德市| 武强县| 湘阴县| 三台县| 克拉玛依市| 黎平县| 慈溪市| 盐亭县| 汝城县| 台湾省| 绥滨县| 张家界市| 临漳县| 蓝山县| 秦安县| 南充市| 石屏县| 台南县| 三门县| 南漳县| 丹巴县| 麻江县| 阿合奇县| 阿拉善左旗| 荆门市| 祁东县| 宜良县| 中西区|