找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Modeling of Topological and Computational Structures and Applications; THALES, Athens, Gree Sofia Lambropoulou,Doros Theodorou,Lo

[復(fù)制鏈接]
樓主: Encounter
41#
發(fā)表于 2025-3-28 16:46:56 | 只看該作者
Oxygen Precipitation in Silicon,In this paper we study the kernel of the homomorphism . of the braid group . in the handlebody . to the braid group .. We prove that this kernel is semi-direct product of free groups. Also, we introduce an algebra ., which is some analog of the Hecke algebra ., constructed by the braid group?..
42#
發(fā)表于 2025-3-28 21:42:42 | 只看該作者
43#
發(fā)表于 2025-3-29 02:51:08 | 只看該作者
Representation Theory of Framisations of Knot AlgebrasWe study the algebraic structure and the representation theory of the Yokonuma–Hecke algebra of type ., its generalisations, the affine and cyclotomic Yokonuma–Hecke algebras, and its Temperley–Lieb type quotients, the Yokonuma–Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and the Complex Reflection Temperley–Lieb algebra.
44#
發(fā)表于 2025-3-29 06:47:15 | 只看該作者
45#
發(fā)表于 2025-3-29 11:01:01 | 只看該作者
46#
發(fā)表于 2025-3-29 14:42:38 | 只看該作者
47#
發(fā)表于 2025-3-29 16:24:07 | 只看該作者
Interfacial Fracture in Alloy Steelshe Yokonuma–Hecke algebra of type .. More precisely, we present all three possible quotient algebras the emerged during this construction and we discuss their dimension, linear bases, representation theory and the necessary and sufficient conditions for the unique Markov trace of the Yokonuma–Hecke
48#
發(fā)表于 2025-3-29 23:23:24 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:31 | 只看該作者
Fatigue Crack Initiation with Creephe other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou. The purpose of this paper is to show the main concepts and results of both framizations, giving emphasis to the second one, and to provide a preliminary comparison of the invariants constructed from both framization
50#
發(fā)表于 2025-3-30 04:51:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双峰县| 镇赉县| 阜宁县| 项城市| 成安县| 柯坪县| 淄博市| 隆化县| 远安县| 前郭尔| 邹平县| 古浪县| 扬州市| 临桂县| 华亭县| 泰州市| 莲花县| 巴楚县| 福鼎市| 沙坪坝区| 民和| 东乌珠穆沁旗| 武平县| 油尖旺区| 珲春市| 宜章县| 岚皋县| 常熟市| 友谊县| 青冈县| 民丰县| 宜宾县| 琼结县| 略阳县| 舟曲县| 游戏| 青海省| 平陆县| SHOW| 天门市| 梅河口市|