找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory; V. Srinivas Book 19911st edition Springer Science+Business Media New York 1991 algebra.Algebraic K-theory.K-theory

[復(fù)制鏈接]
樓主: 使入伍
11#
發(fā)表于 2025-3-23 12:47:36 | 只看該作者
https://doi.org/10.1007/978-3-030-93158-2Let S be an abelian monoid i.e. S has a commutative, associative binary operation with a 2-sided identity. We say that S acts on a set X if there is a homomorphism of monoids S → Hom. (X, X); if s ε S, the corresponding map of sets X → X is called translation by s. We say that S acts . on X if each translation is bijective.
12#
發(fā)表于 2025-3-23 14:56:56 | 只看該作者
https://doi.org/10.1007/978-3-030-93158-2Let F be a field, F? a separable closure of F, G = Gal (F?/F). Let n>0 be an integer relatively prime to char. F.
13#
發(fā)表于 2025-3-23 19:11:32 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:59 | 只看該作者
15#
發(fā)表于 2025-3-24 02:30:41 | 只看該作者
The K-Theory of Rings and Schemes,If R is a ring, let . (R) denote the category of finitely generated projective (left) R-modules. This is a full subcategory of the abelian category of left R-modules, so that . (R) is an exact category where all exact sequences are split. We will prove the following result, comparing the plus and Q constructions, in §7.
16#
發(fā)表于 2025-3-24 07:07:13 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:31 | 只看該作者
Comparison of the Plus and Q-Constructions,Let S be an abelian monoid i.e. S has a commutative, associative binary operation with a 2-sided identity. We say that S acts on a set X if there is a homomorphism of monoids S → Hom. (X, X); if s ε S, the corresponding map of sets X → X is called translation by s. We say that S acts . on X if each translation is bijective.
18#
發(fā)表于 2025-3-24 17:28:30 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:51 | 只看該作者
Algebraic K-Theory978-1-4899-6735-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
20#
發(fā)表于 2025-3-24 23:37:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦城县| 桐梓县| 新河县| 湾仔区| 商河县| 兴业县| 昌宁县| 新郑市| 霍山县| 萍乡市| 东台市| 老河口市| 星子县| 崇信县| 酒泉市| 古丈县| 新干县| 四子王旗| 乌鲁木齐县| 桂平市| 潍坊市| 武强县| 同德县| 日喀则市| 大竹县| 上林县| 邢台县| 嘉禾县| 和硕县| 固镇县| 芷江| 繁昌县| 奉节县| 容城县| 壤塘县| 岢岚县| 达孜县| 珲春市| 开阳县| 红河县| 句容市|