找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic K-Theory; V. Srinivas Book 19911st edition Springer Science+Business Media New York 1991 algebra.Algebraic K-theory.K-theory

[復(fù)制鏈接]
樓主: 使入伍
21#
發(fā)表于 2025-3-25 04:00:37 | 只看該作者
Lecture Notes in Computer Scienceove the so called “fundamental theorem” (9.8) which computes K.(A[t, t.]), and to relate the study of 0-cycles on normal surfaces to modules of finite length and finite projective dimension over the local rings at singular points. We begin with Quillen’s localisation theorem, proved in “Higher Algebraic K-theory II”.
22#
發(fā)表于 2025-3-25 07:54:06 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:51 | 只看該作者
Springer Science+Business Media New York 1991
24#
發(fā)表于 2025-3-25 18:25:11 | 只看該作者
25#
發(fā)表于 2025-3-25 22:04:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:51 | 只看該作者
,Exact Categories and Quillen’s Q-Construction,ive category ζ, satisfying suitable axioms (see Quillen’s paper for details). In all cases relevant to us, the category embeds naturally in some abelian category ., such that ζ, is closed under extensions in ..
27#
發(fā)表于 2025-3-26 04:34:22 | 只看該作者
Fernando Osório,Bernard Amy,Adelmo Cechinive category ζ, satisfying suitable axioms (see Quillen’s paper for details). In all cases relevant to us, the category embeds naturally in some abelian category ., such that ζ, is closed under extensions in ..
28#
發(fā)表于 2025-3-26 09:43:35 | 只看該作者
29#
發(fā)表于 2025-3-26 14:45:28 | 只看該作者
The Plus Construction,? GL(R), π.(BGL(R)) = 0 for i≥2, and that these properties characterise BGL(R) upto homotopy equivalence (since we are assuming that all spaces considered here have the homotopy type of a CW-complex). We give a construction of the classifying space of a discrete group in the next chapter (Example (3.10)).
30#
發(fā)表于 2025-3-26 17:01:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 11:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华亭县| 哈尔滨市| 临漳县| 蚌埠市| 齐河县| 泸水县| 女性| 明溪县| 木兰县| 安岳县| 星座| 松溪县| 莒南县| 宜州市| 定西市| 鱼台县| 久治县| 喀喇沁旗| 利川市| 铜梁县| 兴业县| 崇左市| 苍梧县| 万宁市| 弋阳县| 武隆县| 饶河县| 石阡县| 石城县| 林口县| 泌阳县| 文安县| 大渡口区| 扶沟县| 黎城县| 隆子县| 浮梁县| 蒙山县| 德庆县| 北票市| 钟山县|