找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Function Fields and Codes; Henning Stichtenoth Textbook 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Algebra.Algebr

[復(fù)制鏈接]
樓主: 啞劇表演
21#
發(fā)表于 2025-3-25 06:44:13 | 只看該作者
Algebraic Geometry Codes,ncepts of coding theory. Then we define algebraic geometry codes (AG codes) and develop their main properties. The codes constructed by means of a rational function field are discussed in detail in Section 2.3.
22#
發(fā)表于 2025-3-25 09:35:00 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:17 | 只看該作者
Asymptotic Bounds for the Number of Rational Places,e Weil Bound . ≤ . + 1 + 2.1/2, and that this upper bound can be attained only if . ≤ (. ? .1/2)/2. Here our aim is to investigate what happens if the genus is large with respect to .. The results of this chapter have interesting applications in coding theory, see Section 8.4.
24#
發(fā)表于 2025-3-25 16:23:08 | 只看該作者
25#
發(fā)表于 2025-3-25 23:50:42 | 只看該作者
26#
發(fā)表于 2025-3-26 01:23:54 | 只看該作者
He Huang,Philippe Lebeau,Cathy Macharisncepts of coding theory. Then we define algebraic geometry codes (AG codes) and develop their main properties. The codes constructed by means of a rational function field are discussed in detail in Section 2.3.
27#
發(fā)表于 2025-3-26 07:27:08 | 只看該作者
28#
發(fā)表于 2025-3-26 12:15:01 | 只看該作者
Zoran Wittine,Sanja Franc,Antea Bari?i?e Weil Bound . ≤ . + 1 + 2.1/2, and that this upper bound can be attained only if . ≤ (. ? .1/2)/2. Here our aim is to investigate what happens if the genus is large with respect to .. The results of this chapter have interesting applications in coding theory, see Section 8.4.
29#
發(fā)表于 2025-3-26 15:34:12 | 只看該作者
30#
發(fā)表于 2025-3-26 20:06:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 11:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乃东县| 光山县| 墨脱县| 海丰县| 彭泽县| 太仆寺旗| 武义县| 宁强县| 平谷区| 韩城市| 阳山县| 海宁市| 玉环县| 柯坪县| 汶上县| 大渡口区| 商水县| 滨海县| 汪清县| 玉环县| 互助| 巴彦淖尔市| 娄烦县| 吴川市| 广河县| 石屏县| 五指山市| 三台县| 鹿邑县| 长海县| 泰顺县| 措美县| 阿拉善左旗| 徐汇区| 收藏| 天等县| 万源市| 三明市| 专栏| 色达县| 海门市|