找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Function Fields and Codes; Henning Stichtenoth Textbook 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Algebra.Algebr

[復(fù)制鏈接]
樓主: 啞劇表演
11#
發(fā)表于 2025-3-23 11:32:49 | 只看該作者
12#
發(fā)表于 2025-3-23 17:28:07 | 只看該作者
He Huang,Philippe Lebeau,Cathy Macharisncepts of coding theory. Then we define algebraic geometry codes (AG codes) and develop their main properties. The codes constructed by means of a rational function field are discussed in detail in Section 2.3.
13#
發(fā)表于 2025-3-23 18:37:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:38:11 | 只看該作者
Anton Stipe?,Biljana Mileva Boshkoskar in greater detail the case of a finite constant field. Observe that a finite field is perfect, so that all results from Chapters 3 and 4 apply. We will mainly be interested in the places of degree one of a function field over a finite field. Their number is finite and can be estimated by the Hasse
15#
發(fā)表于 2025-3-24 05:25:19 | 只看該作者
Anton Stipe?,Biljana Mileva Boshkoskasome quadratic extensions of the rational function field (Example 3.7.6). Now we would like to discuss some other examples in detail. These examples serve as an illustration of the general theory of algebraic function fields developed in Chapters 1, 3, 4 and 5. Some of the examples will be used in C
16#
發(fā)表于 2025-3-24 09:12:59 | 只看該作者
Zoran Wittine,Sanja Franc,Antea Bari?i?e Weil Bound . ≤ . + 1 + 2.1/2, and that this upper bound can be attained only if . ≤ (. ? .1/2)/2. Here our aim is to investigate what happens if the genus is large with respect to .. The results of this chapter have interesting applications in coding theory, see Section 8.4.
17#
發(fā)表于 2025-3-24 13:34:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:54 | 只看該作者
https://doi.org/10.1007/978-3-540-76878-4Algebra; Algebraische Funktionenk?rper; Codierungstheorie; Funktionen; algebraic curves; algebraic functi
19#
發(fā)表于 2025-3-24 20:21:18 | 只看該作者
978-3-642-09556-6Springer-Verlag Berlin Heidelberg 2009
20#
發(fā)表于 2025-3-25 02:59:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 11:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐陵市| 兰西县| 博野县| 凤冈县| 嘉兴市| 东丰县| 平凉市| 安国市| 布尔津县| 离岛区| 张掖市| 漯河市| 望都县| 宝丰县| 塘沽区| 洛阳市| 故城县| 平舆县| 大港区| 马鞍山市| 黄骅市| 射阳县| 广安市| 磴口县| 揭东县| 太和县| 乃东县| 江华| 河北省| 许昌市| 东兰县| 思南县| 江安县| 龙州县| 双峰县| 宁陕县| 尼勒克县| 铁力市| 建始县| 女性| 朔州市|