找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Function Fields and Codes; Henning Stichtenoth Textbook 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Algebra.Algebr

[復(fù)制鏈接]
樓主: 啞劇表演
11#
發(fā)表于 2025-3-23 11:32:49 | 只看該作者
12#
發(fā)表于 2025-3-23 17:28:07 | 只看該作者
He Huang,Philippe Lebeau,Cathy Macharisncepts of coding theory. Then we define algebraic geometry codes (AG codes) and develop their main properties. The codes constructed by means of a rational function field are discussed in detail in Section 2.3.
13#
發(fā)表于 2025-3-23 18:37:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:38:11 | 只看該作者
Anton Stipe?,Biljana Mileva Boshkoskar in greater detail the case of a finite constant field. Observe that a finite field is perfect, so that all results from Chapters 3 and 4 apply. We will mainly be interested in the places of degree one of a function field over a finite field. Their number is finite and can be estimated by the Hasse
15#
發(fā)表于 2025-3-24 05:25:19 | 只看該作者
Anton Stipe?,Biljana Mileva Boshkoskasome quadratic extensions of the rational function field (Example 3.7.6). Now we would like to discuss some other examples in detail. These examples serve as an illustration of the general theory of algebraic function fields developed in Chapters 1, 3, 4 and 5. Some of the examples will be used in C
16#
發(fā)表于 2025-3-24 09:12:59 | 只看該作者
Zoran Wittine,Sanja Franc,Antea Bari?i?e Weil Bound . ≤ . + 1 + 2.1/2, and that this upper bound can be attained only if . ≤ (. ? .1/2)/2. Here our aim is to investigate what happens if the genus is large with respect to .. The results of this chapter have interesting applications in coding theory, see Section 8.4.
17#
發(fā)表于 2025-3-24 13:34:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:54 | 只看該作者
https://doi.org/10.1007/978-3-540-76878-4Algebra; Algebraische Funktionenk?rper; Codierungstheorie; Funktionen; algebraic curves; algebraic functi
19#
發(fā)表于 2025-3-24 20:21:18 | 只看該作者
978-3-642-09556-6Springer-Verlag Berlin Heidelberg 2009
20#
發(fā)表于 2025-3-25 02:59:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西青区| 成安县| 资中县| 岫岩| 五河县| 莱西市| 白山市| 南郑县| 阳朔县| 麦盖提县| 赤峰市| 赫章县| 高青县| 鄢陵县| 安义县| 和龙市| 麟游县| 平昌县| 新兴县| 织金县| 焉耆| 抚远县| 大港区| 巴林右旗| 邓州市| 出国| 宣威市| 东乌珠穆沁旗| 安顺市| 兴和县| 神木县| 江陵县| 天祝| 阜新市| 十堰市| 民丰县| 华安县| 麦盖提县| 威宁| 太康县| 西安市|