找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps and Learning Vector Quantization; Proceedings of the 1 Thomas Villmann,Frank-Michael Schleif,Mandy Lange C

[復(fù)制鏈接]
樓主: 水平
41#
發(fā)表于 2025-3-28 14:41:37 | 只看該作者
Stuart A. Macgregor,Odile Eisensteinr, those based on divergences such as stochastic neighbour embedding (SNE). The big advantage of SNE and its variants is that the neighbor preservation is done by optimizing the similarities in both high- and low-dimensional space. This work presents a brief review of SNE-based methods. Also, a comp
42#
發(fā)表于 2025-3-28 19:28:21 | 只看該作者
43#
發(fā)表于 2025-3-29 01:35:42 | 只看該作者
44#
發(fā)表于 2025-3-29 03:25:47 | 只看該作者
https://doi.org/10.1007/978-3-642-18012-5ectorial class labelings for the training data and the prototypes. It employs t-norms, known from fuzzy learning and fuzzy set theory, in the class label assignments, leading to a more flexible model with respect to domain requirements. We present experiments to demonstrate the extended algorithm in
45#
發(fā)表于 2025-3-29 09:35:34 | 只看該作者
46#
發(fā)表于 2025-3-29 11:29:52 | 只看該作者
Mathew Schwartz,Michael Ehrlicharticularly intuitive framework, in which to discuss the basic ideas of distance based classification. A key issue is that of chosing an appropriate distance or similarity measure for the task at hand. Different classes of distance measures, which can be incorporated into the LVQ framework, are intr
47#
發(fā)表于 2025-3-29 19:05:25 | 只看該作者
User Defined Conceptual Modeling Gestures,tion ability with an intuitive learning paradigm: models are represented by few characteristic prototypes, the latter often being located at class typical positions in the data space. In this article we investigate inhowfar these expectations are actually met by modern LVQ schemes such as robust sof
48#
發(fā)表于 2025-3-29 21:50:11 | 只看該作者
49#
發(fā)表于 2025-3-30 03:35:08 | 只看該作者
Erdogan Kiran,Ke Liu,Zeynep Bayraktara correction model which is more accurate than the usual one, since we apply different linear models in each cluster of context. We do not assume any particular probability distribution of the data and the detection method is based on the distance of new data to the Kohonen map learned with correcte
50#
發(fā)表于 2025-3-30 07:40:52 | 只看該作者
https://doi.org/10.1007/978-1-4615-4371-8s, a Self-Organizing Map (SOM) will be computed using a set of features where each feature is weighted by a relevance factor (RFSOM). These factors are computed using the generalized matrix learning vector quantization (GMLVQ) and allow to scale the input dimensions according to their relevance. Wit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尖扎县| 达拉特旗| 信宜市| 襄城县| 铜梁县| 普兰县| 大丰市| 湛江市| 扶余县| 博乐市| 曲靖市| 武穴市| 滦南县| 张家口市| 丹东市| 涞源县| 商城县| 温州市| 马边| 开远市| 建宁县| 平乡县| 平江县| 麦盖提县| 仁化县| 大荔县| 莱西市| 隆德县| 南昌市| 抚松县| 南和县| 苗栗县| 北票市| 汉川市| 读书| 丰镇市| 汕尾市| 巧家县| 广平县| 大石桥市| 葫芦岛市|