找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps and Learning Vector Quantization; Proceedings of the 1 Thomas Villmann,Frank-Michael Schleif,Mandy Lange C

[復(fù)制鏈接]
樓主: 水平
31#
發(fā)表于 2025-3-26 22:52:01 | 只看該作者
RFSOM – Extending Self-Organizing Feature Maps with Adaptive Metrics to Combine Spatial and Textural of the SOM in the 2.5D point cloud, a more stable behavior of the single neurons in their specific body region, and hence, to a more reliable pose model for further computation. The algorithm was evaluated on different data sets and compared to a Self-Organizing Map trained with the spatial dimensions only using the same data sets.
32#
發(fā)表于 2025-3-27 02:37:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:17:03 | 只看該作者
34#
發(fā)表于 2025-3-27 12:03:27 | 只看該作者
Conference proceedings 2014ited talks.?Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis and time series analysis. Other chapters present the latest the
35#
發(fā)表于 2025-3-27 14:38:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:14:59 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:10 | 只看該作者
https://doi.org/10.1007/978-3-319-02964-1namical system overcomes limitations of the original Self-Organizing Map (SOM) model of Kohonen. Both competition and learning are driven by dynamical systems and performed continuously in time. The equations governing competition are shown to be able to reconsider dynamically their decision through
38#
發(fā)表于 2025-3-28 04:51:58 | 只看該作者
https://doi.org/10.1007/978-3-319-02964-1s a second level of organization of neurons. MS-SOM units tend to focus the learning process in data space zones with high values of a user-defined magnitude function. The model is based in two mechanisms: a secondary local competition step taking into account the magnitude of each unit, and the use
39#
發(fā)表于 2025-3-28 07:11:35 | 只看該作者
Somasundaram Valliappan,Calvin Chee an (implicit) Euclidean space. However, when using such approaches with prototype-based methods, the computational time is related to the number of observations (because the prototypes are expressed as convex combinations of the original data). Also, a side effect of the method is that the interpre
40#
發(fā)表于 2025-3-28 11:39:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 阿合奇县| 长顺县| 武威市| 太和县| 正镶白旗| 长岭县| 睢宁县| 大田县| 都兰县| 渑池县| 霍林郭勒市| 建瓯市| 扎赉特旗| 清镇市| 陈巴尔虎旗| 天峨县| 桐乡市| 凤翔县| 枣庄市| 河西区| 廉江市| 温泉县| 沂源县| 诏安县| 军事| 抚远县| 广水市| 赞皇县| 新余市| 张家港市| 荃湾区| 公主岭市| 长沙县| 资中县| 拉孜县| 阿瓦提县| 南江县| 开鲁县| 广东省| 锦屏县|