找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks – ISNN 2018; 15th International S Tingwen Huang,Jiancheng Lv,Alexander V. Tuzikov Conference proceedings 2018 S

[復(fù)制鏈接]
樓主: TIBIA
31#
發(fā)表于 2025-3-26 22:31:05 | 只看該作者
Fast Convergent Capsule Network with Applications in MNISTn neural network. In this paper, a new activation function is proposed for the capsule network and the least weight loss is added to the loss function. The experiment shows that the improved capsule network improves the convergence speed of the network, increases the generalization ability, and makes the network more efficient.
32#
發(fā)表于 2025-3-27 04:34:06 | 只看該作者
Neural Network Model of Unconscious representatives of given class. These networks generate their self-reproducible descendants which can exchange patterns with each other and generate self-reproducible networks of a higher level representing wider classes of objects. We also give some examples of applications of this model.
33#
發(fā)表于 2025-3-27 05:49:36 | 只看該作者
34#
發(fā)表于 2025-3-27 12:37:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:29 | 只看該作者
Complex-Valued Deep Belief Networksing of complex-valued deep neural networks. Experiments on the MNIST dataset using different network architectures show better results of the complex-valued networks compared to their real-valued counterparts, when complex-valued deep belief networks are used for pretraining them.
36#
發(fā)表于 2025-3-27 18:33:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:49:32 | 只看該作者
38#
發(fā)表于 2025-3-28 05:33:23 | 只看該作者
Conference proceedings 2018.The 98 revised regular papers presented in this volume were carefully reviewed and selected from 214 submissions. The papers cover many?topics of neural network-related research including intelligent control, neurodynamic analysis, bio-signal, bioinformatics and biomedical?engineering, clustering,
39#
發(fā)表于 2025-3-28 10:12:28 | 只看該作者
40#
發(fā)表于 2025-3-28 12:17:25 | 只看該作者
Identification of Vessel Kinetics Based?on?Neural Networks via?Concurrent Learningh and stay bounded within a small neighborhood of ideal weights without a persistence of excitation condition. Finally, by resorting to the Lyapunov theory, the performance of the proposed kinetics identification method is analyzed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌南县| 友谊县| 通许县| 永寿县| 台北县| 游戏| 锡林郭勒盟| 辉南县| 揭东县| 多伦县| 清镇市| 北宁市| 兴化市| 巨鹿县| 东明县| 同心县| 潜山县| 贵南县| 江陵县| 九龙坡区| 新昌县| 琼结县| 娱乐| 高台县| 浮山县| 佛冈县| 新丰县| 墨脱县| 大埔区| 儋州市| 澄迈县| 利津县| 赞皇县| 涟源市| 凤山县| 郴州市| 眉山市| 洞口县| 商水县| 睢宁县| 鹤岗市|