找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks – ISNN 2018; 15th International S Tingwen Huang,Jiancheng Lv,Alexander V. Tuzikov Conference proceedings 2018 S

[復(fù)制鏈接]
查看: 34509|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:18:48 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Neural Networks – ISNN 2018
期刊簡稱15th International S
影響因子2023Tingwen Huang,Jiancheng Lv,Alexander V. Tuzikov
視頻videohttp://file.papertrans.cn/150/149170/149170.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Neural Networks – ISNN 2018; 15th International S Tingwen Huang,Jiancheng Lv,Alexander V. Tuzikov Conference proceedings 2018 S
影響因子This book constitutes the refereed proceedings of the 15th International Symposium on Neural Networks, ISNN 2018, held in Minsk, Belarus in?June 2018..The 98 revised regular papers presented in this volume were carefully reviewed and selected from 214 submissions. The papers cover many?topics of neural network-related research including intelligent control, neurodynamic analysis, bio-signal, bioinformatics and biomedical?engineering, clustering, classification, forecasting, models, algorithms, cognitive computation, machine learning, and optimization.?.
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Advances in Neural Networks – ISNN 2018影響因子(影響力)




書目名稱Advances in Neural Networks – ISNN 2018影響因子(影響力)學(xué)科排名




書目名稱Advances in Neural Networks – ISNN 2018網(wǎng)絡(luò)公開度




書目名稱Advances in Neural Networks – ISNN 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Neural Networks – ISNN 2018被引頻次




書目名稱Advances in Neural Networks – ISNN 2018被引頻次學(xué)科排名




書目名稱Advances in Neural Networks – ISNN 2018年度引用




書目名稱Advances in Neural Networks – ISNN 2018年度引用學(xué)科排名




書目名稱Advances in Neural Networks – ISNN 2018讀者反饋




書目名稱Advances in Neural Networks – ISNN 2018讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:50:15 | 只看該作者
Coordinating Plans of Autonomous Agentson neural network. The capsule network uses vector as input and output and dynamic routing updates parameters, which has better effect than convolution neural network. In this paper, a new activation function is proposed for the capsule network and the least weight loss is added to the loss function
板凳
發(fā)表于 2025-3-22 03:23:56 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:37 | 只看該作者
Actions and plans in multiagent domains,chy of ensembles of Hopfield network representing definite classes of objects. Patterns in each of a network are considered as in some sense identical representatives of given class. These networks generate their self-reproducible descendants which can exchange patterns with each other and generate
5#
發(fā)表于 2025-3-22 12:48:10 | 只看該作者
6#
發(fā)表于 2025-3-22 14:05:47 | 只看該作者
7#
發(fā)表于 2025-3-22 18:28:49 | 只看該作者
M. Ravikanth,T. K. Chandrashekarcal Artificial Neural Networks. Although there has been a wide range of research to improve the accuracy of SNNs, their performance is determined not only by accuracy, but also by speed and energy efficiency. In this study, we analyzed the relationship between hyperparameters, accuracy, speed and en
8#
發(fā)表于 2025-3-22 23:27:03 | 只看該作者
M. Ravikanth,T. K. Chandrashekaraining data to reduce the design cost and enable applying cross-modal networks in sparse data environments. Two approaches for building X-CNNs are presented. The base approach learns the topology in a data-driven manner, by using measurements performed on the base CNN and supplied data. The iterativ
9#
發(fā)表于 2025-3-23 04:27:31 | 只看該作者
10#
發(fā)表于 2025-3-23 08:16:18 | 只看該作者
C. L. Rollinson,E. W. Rosenbloomhitectures to perform better than shallow ones. This paper introduces complex-valued deep belief networks, which can be used for unsupervised pretraining of complex-valued deep neural networks. Experiments on the MNIST dataset using different network architectures show better results of the complex-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永善县| 甘南县| 固阳县| 宜昌市| 五原县| 富裕县| 马公市| 平和县| 文化| 柞水县| 壤塘县| 赤峰市| 富宁县| 湘乡市| 彰化县| 新田县| 普洱| 三明市| 蒙城县| 疏勒县| 开化县| 白水县| 瑞金市| 宜春市| 利津县| 思茅市| 南江县| 洛浦县| 安吉县| 文昌市| 黄龙县| 庄河市| 咸丰县| 靖西县| 南溪县| 关岭| 余姚市| 马鞍山市| 田林县| 铅山县| 柳河县|