找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Methods for Geometric Modeling and Numerical Simulation; Carlotta Giannelli,Hendrik Speleers Book 2019 Springer Nature Switzerlan

[復制鏈接]
樓主: 哥哥大傻瓜
21#
發(fā)表于 2025-3-25 05:12:04 | 只看該作者
https://doi.org/10.1007/978-3-642-55983-9 counterpart of the IGA method, so that the search for efficient quadrature is an active research topic. The focus of the first part is on a brief survey on the contributions available for the reduction of computational costs for such issue. We review the generalized Gaussian strategies and the redu
22#
發(fā)表于 2025-3-25 09:07:13 | 只看該作者
23#
發(fā)表于 2025-3-25 11:46:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:23:01 | 只看該作者
Stefan Zachow,Thomas Hierl,Bodo Erdmannns arising in the isogeometric formulation of the Galerkin Boundary Element Method (BEM). In the first scheme, the regular part of the integrand, consisting of a B-spline and of an auxiliary function, is approximated by a suitable quasi-interpolant spline. In the second scheme, the auxiliary functio
25#
發(fā)表于 2025-3-25 20:44:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:40:43 | 只看該作者
Marc Hensel,Thomas Pralow,Rolf-Rainer Grigatlization of polynomial splines and can be represented in terms of an interesting set of basis functions, the so-called ., which generalize the standard polynomial B-splines. We provide an accessible and self-contained exposition of Tchebycheffian B-splines and their main properties. Our construction
27#
發(fā)表于 2025-3-26 08:11:16 | 只看該作者
28#
發(fā)表于 2025-3-26 11:46:39 | 只看該作者
Quadrature Rules in the Isogeometric Galerkin Method: State of the Art and an Introduction to Weigh978-3-662-56649-7
29#
發(fā)表于 2025-3-26 15:47:56 | 只看該作者
Eigenvalue Isogeometric Approximations Based on B-Splines: Tools and Results,978-3-642-33495-5
30#
發(fā)表于 2025-3-26 20:12:07 | 只看該作者
A Study on Spline Quasi-interpolation Based Quadrature Rules for the Isogeometric Galerkin BEM,978-3-662-65002-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南靖县| 金昌市| 合肥市| 亳州市| 格尔木市| 美姑县| 南投县| 巴楚县| 丹棱县| 洛阳市| 内江市| 汤原县| 天津市| 昌图县| 梁河县| 北流市| 五台县| 垦利县| 余干县| 铁岭县| 德阳市| 龙井市| 平顶山市| 大洼县| 沾化县| 长丰县| 启东市| 澄迈县| 宜兰县| 宁陵县| 墨竹工卡县| 西和县| 合肥市| 通榆县| 茶陵县| 平凉市| 扶余县| 湘潭市| 东阳市| 舞阳县| 张家川|