找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Modules; Proceedings of the P Alberto Facchini,Claudia Menini Conference proceedings 1995 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: 威風(fēng)
51#
發(fā)表于 2025-3-30 09:03:45 | 只看該作者
52#
發(fā)表于 2025-3-30 14:27:08 | 只看該作者
https://doi.org/10.1007/978-3-658-26262-4 endofunctors of ..). Roeder proved that in case . is the ring of integers (i. e. for locally compact abelian groups) Pontryagin duality is the unique functorial duality. It was conjectured by Iv. Prodanov that in case . is an algebraic number ring such a uniqueness is available if and only if . is
53#
發(fā)表于 2025-3-30 19:32:51 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,stions of existence of such rings, Section 2 deals with the situation in which all subrings belong to one of the three classes, and Section 3 is concerned with the behavior of the sets under intersection. In Section 4 we give a brief survey of some generalizations and extensions of results of Sectio
54#
發(fā)表于 2025-3-30 22:18:15 | 只看該作者
55#
發(fā)表于 2025-3-31 02:20:25 | 只看該作者
56#
發(fā)表于 2025-3-31 07:14:51 | 只看該作者
978-94-010-4198-0Springer Science+Business Media Dordrecht 1995
57#
發(fā)表于 2025-3-31 10:41:45 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,s a Jaffard domain if dim.(.) = dim, (.). As the class of Jaffard domains is not stable under localization, a domain . is defined to be a locally Jaffard domain if .. is a Jaffard domain for each prime ideal . of . (cf. [.]).
58#
發(fā)表于 2025-3-31 15:34:33 | 只看該作者
belian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative ri
59#
發(fā)表于 2025-3-31 19:25:15 | 只看該作者
60#
發(fā)表于 2025-3-31 23:22:01 | 只看該作者
https://doi.org/10.1007/978-3-658-26262-4 functorial duality. It was conjectured by Iv. Prodanov that in case . is an algebraic number ring such a uniqueness is available if and only if . is a principal ideal domain. We prove this conjecture for real algebraic number rings and we show that Prodanov’s conjecture fails in case . is an order in an imaginary quadratic number field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谷城县| 武鸣县| 汉川市| 始兴县| 县级市| 武强县| 监利县| 阳原县| 且末县| 裕民县| 伽师县| 泗水县| 凤翔县| 阿城市| 聂荣县| 磐石市| 新源县| 双牌县| 彰化市| 射洪县| 新绛县| 平度市| 呼和浩特市| 元氏县| 蓬莱市| 巴楚县| 安多县| 搜索| 当涂县| 江门市| 都昌县| 肇东市| 神木县| 洛隆县| 左云县| 于都县| 睢宁县| 岳池县| 浏阳市| 资溪县| 娱乐|