找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Modules; Proceedings of the P Alberto Facchini,Claudia Menini Conference proceedings 1995 Springer Science+Business Medi

[復制鏈接]
樓主: 威風
31#
發(fā)表于 2025-3-26 22:55:56 | 只看該作者
32#
發(fā)表于 2025-3-27 02:38:58 | 只看該作者
33#
發(fā)表于 2025-3-27 07:03:55 | 只看該作者
34#
發(fā)表于 2025-3-27 11:42:23 | 只看該作者
35#
發(fā)表于 2025-3-27 13:51:50 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,stions of existence of such rings, Section 2 deals with the situation in which all subrings belong to one of the three classes, and Section 3 is concerned with the behavior of the sets under intersection. In Section 4 we give a brief survey of some generalizations and extensions of results of Sections 1–3, as well as some related results.
36#
發(fā)表于 2025-3-27 20:08:52 | 只看該作者
37#
發(fā)表于 2025-3-27 23:54:33 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,Some recent results on the near isomorphism category of finite rank Butler groups are surveyed. There are categorical connections with representations of finite posets over the integers localized at a prime . and the integers modulo a power of .. As results to date are limited, a number of problems and open questions are included.
38#
發(fā)表于 2025-3-28 05:36:58 | 只看該作者
39#
發(fā)表于 2025-3-28 06:39:39 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,Let . be a commutative, semilocal, Noetherian domain, not a field. We say that . has . representation . provided . has, up to isomorphism, only finitely many indecomposable finitely generated torsion-free modules. A special case (0.6) of our main theorem states that . has finite representation type if and only if
40#
發(fā)表于 2025-3-28 13:11:27 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
娄烦县| 昔阳县| 鄢陵县| 青龙| 化德县| 上虞市| 正阳县| 义马市| 舒兰市| 宁阳县| 天津市| 同江市| 正镶白旗| 孝昌县| 栾川县| 建平县| 德江县| 温宿县| 铅山县| 和硕县| 涿鹿县| 堆龙德庆县| 托克逊县| 大竹县| 邵东县| 泸溪县| 纳雍县| 上思县| 冕宁县| 钦州市| 连云港市| 清镇市| 花垣县| 东至县| 沂南县| 建宁县| 德江县| 黄石市| 长白| 岳阳市| 旬邑县|