找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Modules; Proceedings of the P Alberto Facchini,Claudia Menini Conference proceedings 1995 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: 威風(fēng)
41#
發(fā)表于 2025-3-28 16:57:43 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,We prove that every ∑-pure-injective module over a serial ring is serial and every ∑-pure-injective faithful indecomposable module over a serial ring is ∑-injective. Moreover, every serial ring that can be realized as the endomorphism ring of an artinian module has finite Krull dimension.
42#
發(fā)表于 2025-3-28 19:49:38 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,Let . be an associative ring with identity, fix a right .-module ., and let . = End.(.) be he ring of .-module endomorphisms of .. View as an .-.-bimodule, and let .. denote the category of right modules over a ring .. To emphasize the arbitrary selection of ., . will mean . and Hom = Hom. throughout this paper.
43#
發(fā)表于 2025-3-29 02:12:30 | 只看該作者
44#
發(fā)表于 2025-3-29 06:22:07 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,A module . over a finite dimensional .-algebra . is said to be . in case the only .-linear transformations of . that preserve the . submodule lattice of . are those induced by the elements of . Here we shall discuss recent results regarding the reflexivity the members of certain classes of modules.
45#
發(fā)表于 2025-3-29 09:38:22 | 只看該作者
46#
發(fā)表于 2025-3-29 13:26:13 | 只看該作者
47#
發(fā)表于 2025-3-29 17:01:51 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude, halve the number of theorems to be proved. It also played a most important role in analysis and topology, for example in Banach spaces and algebraic topology. In algebra, beginning with the duality of finite abelian groups as well as that of finite dimensional vector spaces, its role has been no le
48#
發(fā)表于 2025-3-29 22:39:42 | 只看該作者
49#
發(fā)表于 2025-3-30 03:33:40 | 只看該作者
https://doi.org/10.1007/978-3-658-26262-4 of II is isomorphic to Σ. We extend this result to groups . that are “near” H. If . a pure subgroup of H of index smaller than ., then the dual of . is isomorphic to Σ. If Π is a subgroup of countable index in a group . and if . has no direct summand isomorphic to Σ, then the dual of . is free (of
50#
發(fā)表于 2025-3-30 04:14:51 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,ls of . but End(..) is not itself biregular. This note confirms the conjecture by constructing a biregular ring . all of whose Pierce stalks are copies of ..(.), . a division ring, while End(..) is not biregular. The example is one of a family of examples whose underlying space is a non-paracompact
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博罗县| 芜湖市| 眉山市| 平舆县| 濮阳市| 庆云县| 南城县| 贵德县| 金沙县| 宜宾市| 西藏| 安岳县| 盖州市| 泽库县| 商都县| 汉源县| 乌审旗| 安乡县| 台北市| 尤溪县| 广河县| 枣强县| 湖州市| 丰顺县| 陆丰市| 江陵县| 华阴市| 富蕴县| 奈曼旗| 嘉义县| 嵩明县| 岳普湖县| 新巴尔虎右旗| 夏邑县| 襄城县| 耒阳市| 增城市| 南丰县| 盘锦市| 津南区| 交城县|