找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Applications; 21st International C Cheqing Jin,Shiyu Yang,Yong Zhang Conference proceedings 2024 The Editor(s)

[復(fù)制鏈接]
樓主: crusade
51#
發(fā)表于 2025-3-30 09:28:37 | 只看該作者
Hua Yin,Shuo Huang,ZhiJian Wang,Yong Ye,WenHui Zhu
52#
發(fā)表于 2025-3-30 13:50:17 | 只看該作者
Yilin Chen,Tianxing Wu,Yunchang Liu,Yuxiang Wang,Guilin Qi
53#
發(fā)表于 2025-3-30 17:59:19 | 只看該作者
54#
發(fā)表于 2025-3-30 21:59:50 | 只看該作者
55#
發(fā)表于 2025-3-31 02:28:30 | 只看該作者
Iterative Transfer Knowledge Distillation and?Channel Pruning for?Unsupervised Cross-Domain Compress, redundant channels in the student model are pruned to reduce the computational cost while retaining the model accuracy. In particular, the alternation of ACP and TKD ensures effective knowledge transfer, balancing the model size and its performance in the target domain. Experimental results demons
56#
發(fā)表于 2025-3-31 07:16:08 | 只看該作者
Iterative Transfer Knowledge Distillation and?Channel Pruning for?Unsupervised Cross-Domain Compress, redundant channels in the student model are pruned to reduce the computational cost while retaining the model accuracy. In particular, the alternation of ACP and TKD ensures effective knowledge transfer, balancing the model size and its performance in the target domain. Experimental results demons
57#
發(fā)表于 2025-3-31 13:03:28 | 只看該作者
58#
發(fā)表于 2025-3-31 14:48:13 | 只看該作者
Aspect-Based Sentiment Classification Model Based on Multi-view Information Fusionom different perspectives has not been studied. To solve the above problems, an aspect-based sentiment classification model based on multi-view information fusion is proposed. By constructing an inference result set from the large language model (LLM), the LLM’s results are used to enhance the model
59#
發(fā)表于 2025-3-31 19:00:57 | 只看該作者
60#
發(fā)表于 2025-3-31 23:49:14 | 只看該作者
GTGNN: Global Graph and?Taxonomy Tree for?Graph Neural Network Session-Based Recommendationnomy tree to learn user intent from the perspective of attention mechanism and historical distribution data respectively, simulating the decision-making process when interacting with new items. Meanwhile, to solve the problem that GNN cannot learn new items, zero-shot learning is introduced to infer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫阳县| 麻栗坡县| 腾冲县| 新野县| 长兴县| 益阳市| 新昌县| 资源县| 商丘市| 监利县| 浦东新区| 辽中县| 娄烦县| 青冈县| 水富县| 金坛市| 唐河县| 绥化市| 莱州市| 乐至县| 丰台区| 长汀县| 郯城县| 灵武市| 赤城县| 宁德市| 鄂托克旗| 新兴县| 德保县| 桃园市| 固原市| 天柱县| 定边县| 冕宁县| 永德县| 新津县| 台中市| 德江县| 乐昌市| 兰坪| 定兴县|