找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Applications; 21st International C Cheqing Jin,Shiyu Yang,Yong Zhang Conference proceedings 2024 The Editor(s)

[復(fù)制鏈接]
樓主: crusade
21#
發(fā)表于 2025-3-25 05:12:32 | 只看該作者
22#
發(fā)表于 2025-3-25 09:49:40 | 只看該作者
A Study on Context-Matching-Based Joint Training for Chinese Coreference Resolutiond Chinese coreference resolution models, a context-matching-based joint training Chinese coreference resolution model is proposed. The model utilizes RoBERTa(wwm)-large combined with BiLSTM to encode Chinese text, then clusters word embeddings. It uses the results of the word clustering to recognize
23#
發(fā)表于 2025-3-25 15:42:43 | 只看該作者
24#
發(fā)表于 2025-3-25 16:59:39 | 只看該作者
DFCDR: Domain-Aware Feature Decoupling and?Fusion for?Cross-Domain Recommendationintroducing domain-specific preferences from the source domain can introduce irrelevant information to the target domain. Furthermore, directly combining domain-general and domain-specific information may hinder the performance of the target domain. In this paper, we propose a domain-aware feature d
25#
發(fā)表于 2025-3-25 21:01:05 | 只看該作者
Two-Stage Enhancement for?Recommendation Systems Based on?Contrastive Learninghods often employ graph neural networks to process the relational networks and use contrastive learning to obtain more effective node representations. However, persistent challenges from active users’ noisy data and the cold-start problem related to inactive users impact model performance. Recent st
26#
發(fā)表于 2025-3-26 03:12:21 | 只看該作者
27#
發(fā)表于 2025-3-26 05:28:32 | 只看該作者
28#
發(fā)表于 2025-3-26 08:30:45 | 只看該作者
Popularity-Aware Graph Neural Network with?Global Context for?Session-Based Recommendationsystems model user preferences from the current session using graph neural networks but overlook the varying importance of items with different popularity. To address this, we propose the Popularity-aware Graph Neural Network with Global Context (PGNN-GC), which models popularity features to better
29#
發(fā)表于 2025-3-26 15:53:04 | 只看該作者
30#
發(fā)表于 2025-3-26 18:34:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄骅市| 米易县| 常宁市| 理塘县| 邵武市| 科技| 思茅市| 凌云县| 小金县| 大埔县| 辉南县| 托克逊县| 鱼台县| 营口市| 马边| 邵阳县| 塔河县| 宁武县| 榆林市| 广水市| 永泰县| 太保市| 万山特区| 萍乡市| 乐亭县| 美姑县| 东丽区| 西林县| 都江堰市| 黄陵县| 浦东新区| 务川| 鹿泉市| 黄山市| 盘锦市| 栾川县| 鄯善县| 南皮县| 白沙| 河北省| 涞水县|