找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Their Applications; Lokenath Debnath Textbook 20021st edition Springer Science+Business Media New York 2002 Fourier

[復(fù)制鏈接]
樓主: Coenzyme
31#
發(fā)表于 2025-3-26 22:16:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:28:27 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:29 | 只看該作者
The Wavelet Transform and Its Basic Properties,y at low frequencies. These difficulties led to a problem of finding a suitable reconstruction formula. In order to resolve these difficulties, Morlet first made an attempt to use analytic signals .(.) = .(.) exp{.(.)} and then introduced the wavelet . defined by its Fourier transform
34#
發(fā)表于 2025-3-27 11:12:10 | 只看該作者
35#
發(fā)表于 2025-3-27 17:17:57 | 只看該作者
36#
發(fā)表于 2025-3-27 21:22:16 | 只看該作者
Fourier Transforms and Their Applications,ry differential equations, partial differential equations, and integral equations are discussed. Included are some examples of applications of multiple Fourier transforms to important partial differential equations and Green’s functions.
37#
發(fā)表于 2025-3-28 00:07:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:59:13 | 只看該作者
,Newland’s Harmonic Wavelets,ts Fourier transform .(.) is zero except for an octave band of frequencies. Furthermore, he generalized the concept of the harmonic wavelet to describe a family of mixed wavelets with the simple mathematical structure. It is also shown that this family provides a complete set of orthonormal basis functions for signal analysis.
39#
發(fā)表于 2025-3-28 07:18:19 | 只看該作者
,Newland’s Harmonic Wavelets,ts Fourier transform .(.) is zero except for an octave band of frequencies. Furthermore, he generalized the concept of the harmonic wavelet to describe a family of mixed wavelets with the simple mathematical structure. It is also shown that this family provides a complete set of orthonormal basis functions for signal analysis.
40#
發(fā)表于 2025-3-28 13:50:19 | 只看該作者
on, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涡阳县| 青浦区| 深圳市| 商城县| 乐亭县| 阿荣旗| 铅山县| 琼结县| 汽车| 萝北县| 滦平县| 太谷县| 丹棱县| 漳浦县| 葫芦岛市| 安陆市| 紫金县| 白银市| 卢氏县| 大方县| 常州市| 错那县| 榕江县| 交口县| 双桥区| 沧州市| 洱源县| 四子王旗| 定西市| 赤城县| 四会市| 阳春市| 盐津县| 霸州市| 西乌珠穆沁旗| 改则县| 鄂托克旗| 清水河县| 平和县| 云龙县| 新建县|