找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Their Applications; Lokenath Debnath Textbook 20021st edition Springer Science+Business Media New York 2002 Fourier

[復(fù)制鏈接]
查看: 23055|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:44:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Wavelet Transforms and Their Applications
編輯Lokenath Debnath
視頻videohttp://file.papertrans.cn/1022/1021264/1021264.mp4
圖書封面Titlebook: Wavelet Transforms and Their Applications;  Lokenath Debnath Textbook 20021st edition Springer Science+Business Media New York 2002 Fourier
描述Overview Historically, the concept of "ondelettes" or "wavelets" originated from the study of time-frequency signal analysis, wave propagation, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982, Jean MorIet, in collaboration with a group of French engineers, first introduced the idea of wavelets as a family of functions constructed by using translation and dilation of a single function, called the mother wavelet, for the analysis of nonstationary signals. However, this new concept can be viewed as the synthesis of various ideas originating from different disciplines including mathematics (Calder6n-Zygmund operators and Littlewood-Paley theory), physics (coherent states in quantum mechanics and the renormalization group), and engineering (quadratic mirror filters, sideband coding in signal processing, and pyramidal algorithms in image processing). Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physi
出版日期Textbook 20021st edition
關(guān)鍵詞Fourier transform; Gabor transform; Signal; Wavelet; analysis; information; linear optimization; signal ana
版次1
doihttps://doi.org/10.1007/978-1-4612-0097-0
isbn_ebook978-1-4612-0097-0
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Wavelet Transforms and Their Applications影響因子(影響力)




書目名稱Wavelet Transforms and Their Applications影響因子(影響力)學(xué)科排名




書目名稱Wavelet Transforms and Their Applications網(wǎng)絡(luò)公開度




書目名稱Wavelet Transforms and Their Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Wavelet Transforms and Their Applications被引頻次




書目名稱Wavelet Transforms and Their Applications被引頻次學(xué)科排名




書目名稱Wavelet Transforms and Their Applications年度引用




書目名稱Wavelet Transforms and Their Applications年度引用學(xué)科排名




書目名稱Wavelet Transforms and Their Applications讀者反饋




書目名稱Wavelet Transforms and Their Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:58:39 | 只看該作者
Lokenath Debnath und Falsche des Tages überliefern. Hier kann die Wissenschaft nicht bearbeitet werden, sondern was man wei?, glaubt, w?hnt, wird aufgenommen; deswegen sehen solche Werke nach fünfzig Jahren gar wunderlich aus. " Diese kritische Einstellung zum "Handbuch" hatte ich vor Augen, als ich mit den Vorbere
地板
發(fā)表于 2025-3-22 06:15:34 | 只看該作者
5#
發(fā)表于 2025-3-22 11:21:47 | 只看該作者
6#
發(fā)表于 2025-3-22 13:39:16 | 只看該作者
Springer Science+Business Media New York 2002
7#
發(fā)表于 2025-3-22 17:33:40 | 只看該作者
8#
發(fā)表于 2025-3-22 21:56:51 | 只看該作者
https://doi.org/10.1007/978-1-4612-0097-0Fourier transform; Gabor transform; Signal; Wavelet; analysis; information; linear optimization; signal ana
9#
發(fā)表于 2025-3-23 03:42:45 | 只看該作者
The Gabor Transform and Time-Frequency Signal Analysis,nals and processes where the properties are statistically invariant over time. However, it cannot be used for the frequency analysis thai is local in time. In recent years, several useful methods have been developed for the time-frequency signal analysis. They include the Gabor transform, the Zak transform, and the wavelet transform.
10#
發(fā)表于 2025-3-23 06:43:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
府谷县| 澳门| 西宁市| 通江县| 阿拉尔市| 奉化市| 昌乐县| 宁阳县| 盱眙县| 新晃| 攀枝花市| 麻阳| 临西县| 蓬莱市| 广德县| 辽源市| 深州市| 剑川县| 永胜县| 玉屏| 荣昌县| 防城港市| 恩平市| 和龙市| 永寿县| 亚东县| 平远县| 淮北市| 读书| 淮南市| 龙门县| 和田市| 兴国县| 靖州| 叶城县| 七台河市| 祥云县| 体育| 抚顺市| 西华县| 哈密市|