找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning; Richard S. Sutton Book 1992 Springer Science+Business Media New York 1992 agents.algorithms.artificial intelligenc

[復(fù)制鏈接]
樓主: 審美家
11#
發(fā)表于 2025-3-23 11:16:56 | 只看該作者
12#
發(fā)表于 2025-3-23 16:16:06 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:45 | 只看該作者
Technical Note,od for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states..This paper presents and proves in detail a convergence theorem for Q-learning based on that outlined in Watkins (1989)
14#
發(fā)表于 2025-3-24 00:56:57 | 只看該作者
15#
發(fā)表于 2025-3-24 06:20:29 | 只看該作者
Transfer of Learning by Composing Solutions of Elemental Sequential Tasks,s of reinforcement learning have focused on single tasks. In this paper I consider a class of sequential decision tasks (SDTs), called composite sequential decision tasks, formed by temporally concatenating a number of elemental sequential decision tasks. Elemental SIYI’s cannot be decomposed into s
16#
發(fā)表于 2025-3-24 07:38:28 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:33 | 只看該作者
18#
發(fā)表于 2025-3-24 14:51:25 | 只看該作者
,The Convergence of TD(λ) for General λ,it still converges, but to a different answer from the least mean squares algorithm. Finally it adapts Watkins’ theorem that Q-learning, his closely related prediction and action learning method, converges with probability one, to demonstrate this strong form of convergence for a slightly modified version of TD.
19#
發(fā)表于 2025-3-24 22:30:27 | 只看該作者
A Reinforcement Connectionist Approach to Robot Path Finding in Non-Maze-Like Environments,uts and outputs, (iii) exhibits good noise-tolerance and generalization capabilities, (iv) copes with dynamic environments, and (v) solves an instance of the path finding problem with strong performance demands.
20#
發(fā)表于 2025-3-25 02:27:05 | 只看該作者
0893-3405 ychology for almost a century, and that workhas had a very strong impact on the AI/engineering work. One could infact consider all of reinforcement learning to 978-1-4613-6608-9978-1-4615-3618-5Series ISSN 0893-3405
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 20:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德市| 大余县| 广汉市| 定边县| 鹤庆县| 澜沧| 沧州市| 丽江市| 祥云县| 余江县| 北票市| 平塘县| 阜阳市| 宁河县| 阿坝县| 嵊州市| 临朐县| 呼图壁县| 贺州市| 北海市| 西乌珠穆沁旗| 呼玛县| 班戈县| 温州市| 五河县| 白水县| 义乌市| 吉首市| 大城县| 永安市| 理塘县| 静海县| 温州市| 湖州市| 诏安县| 广昌县| 越西县| 德昌县| 天水市| 广德县| 平南县|