找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: melancholy
31#
發(fā)表于 2025-3-27 00:22:53 | 只看該作者
Homology Groups and Ideal Class Groups II: Higher-Order Genus Theory,Let . be a rational homology 3-sphere which is a double covering of . ramified over a .-component link and let . be a quadratic extension of . ramified over . odd prime numbers.
32#
發(fā)表于 2025-3-27 03:16:47 | 只看該作者
Homology Groups and Ideal Class Groups III: Asymptotic Formulas,As we discussed in Chap. ., there is a group-theoretic analogy between the knot module associated to the infinite cyclic covering of a knot exterior and the Iwasawa module associated to the cyclotomic .-extension of number fields. Based on this analogy, there are found close parallels between the Alexander–Fox theory and Iwasawa theory.
33#
發(fā)表于 2025-3-27 08:12:17 | 只看該作者
Torsions and the Iwasawa Main Conjecture,The Iwasawa main conjecture asserts that the Iwasawa polynomial coincides essentially with the Kubota–Leopoldt .-adic analytic zeta function.
34#
發(fā)表于 2025-3-27 10:51:20 | 只看該作者
Moduli Spaces of Representations of Knot and Prime Groups,In view of the analogy between a knot group . and a prime group ., we expect some analogies between the moduli spaces of representations of knot and prime groups.
35#
發(fā)表于 2025-3-27 14:06:32 | 只看該作者
Deformations of Hyperbolic Structures and ,-Adic Ordinary Modular Forms,As we have seen in Chap. ., the Alexander–Fox theory and Iwasawa theory may be regarded as theories on the moduli spaces of 1-dimensional representations.
36#
發(fā)表于 2025-3-27 21:05:30 | 只看該作者
37#
發(fā)表于 2025-3-28 01:04:55 | 只看該作者
https://doi.org/10.1007/978-981-99-9255-33-manifolds; arithmetic topology; homology groups; knots and primes; legendre symbols; number rings
38#
發(fā)表于 2025-3-28 05:05:29 | 只看該作者
Preliminaries: Fundamental Groups and Galois Groups,summary of fundamental groups and Galois theory for topological spaces and arithmetic rings in Sects. 2.1 and 2.2, since the analogies between topological and arithmetic fundamental/Galois groups are fundamental in this book.
39#
發(fā)表于 2025-3-28 07:44:49 | 只看該作者
Masanori MorishitaIs the new, updated edition of the first book on arithmetic topology.Provides a solid foundation of arithmetic topology for graduate students and researchers.Includes useful problems guiding future st
40#
發(fā)表于 2025-3-28 10:35:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂阳县| 弥渡县| 沙雅县| 信宜市| 安国市| 穆棱市| 鱼台县| 阳新县| 玉林市| 海口市| 同江市| 孟津县| 石林| 治县。| 贡山| 墨江| 乌海市| 隆德县| 苍南县| 清涧县| 富裕县| 玛沁县| 闽清县| 大足县| 台东县| 当涂县| 平昌县| 香河县| 常熟市| 邛崃市| 墨竹工卡县| 高阳县| 连江县| 岳西县| 凌海市| 庆元县| 田东县| 北流市| 南溪县| 海晏县| 大名县|