找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: melancholy
21#
發(fā)表于 2025-3-25 05:11:24 | 只看該作者
n Niger State of Nigeria to areas slightly beyond Lokoja in the south. It is delimited in the northeast and southwest by the basement complex while it merges with Anambra and Sokoto basins in sedimentary fill comprising post orogenic molasse facies and a few thin unfolded marine sediments (Adeleye,
22#
發(fā)表于 2025-3-25 09:55:05 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:00:25 | 只看該作者
25#
發(fā)表于 2025-3-25 20:07:44 | 只看該作者
Knots and Primes, 3-Manifolds and Number Rings,In this chapter we explain the basic analogies between knots and primes, 3-manifolds and number rings, which will be fundamental in subsequent chapters.
26#
發(fā)表于 2025-3-26 03:43:48 | 只看該作者
Linking Numbers and Legendre Symbols,In this chapter, we shall discuss the analogy between the linking number and the Legendre symbol, based on the analogies between knots and primes in Chap. ..
27#
發(fā)表于 2025-3-26 06:55:53 | 只看該作者
Decompositions of Knots and Primes,As we have seen in Sect. ., the Legendre symbol describes how a prime number is decomposed in a quadratic extension.
28#
發(fā)表于 2025-3-26 08:56:47 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:12 | 只看該作者
Link Groups and Galois Groups with Restricted Ramification,As explained in Chap. ., our basic idea is to regard a Galois group with restricted ramification ., ., as an analogue of a link group . (cf. (.)).
30#
發(fā)表于 2025-3-26 18:47:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拜城县| 西充县| 马山县| 富民县| 怀仁县| 新竹市| 邢台县| 广河县| 台北市| 于都县| 楚雄市| 甘南县| 石屏县| 铅山县| 秦安县| 白玉县| 富宁县| 肥西县| 渭源县| 长葛市| 阜新| 德化县| 周至县| 浪卡子县| 威海市| 都匀市| 牡丹江市| 遂宁市| 酉阳| 柳河县| 南丹县| 腾冲县| 肃宁县| 东台市| 长葛市| 青冈县| 繁峙县| 临沭县| 澄迈县| 昭苏县| 旬阳县|