找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Complex Integration; A. O. Gogolin,Elena G. Tsitsishvili,Andreas Komnik Textbook 2014 Springer International Publishing Switze

[復(fù)制鏈接]
樓主: 調(diào)戲
21#
發(fā)表于 2025-3-25 03:42:03 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:36 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:39 | 只看該作者
25#
發(fā)表于 2025-3-25 20:35:22 | 只看該作者
Solutions to the Problems,In polar coordinates . we have: .. If we take the limit . ‘radially’, i.e. . first and then ., by definition of the derivative we obtain
26#
發(fā)表于 2025-3-26 00:19:52 | 只看該作者
https://doi.org/10.1007/978-3-319-00212-5Branch Cut Integration; Complex Integration; Contour Integrals; Examples and Solutions in Complex Integ
27#
發(fā)表于 2025-3-26 08:05:27 | 只看該作者
28#
發(fā)表于 2025-3-26 12:06:30 | 只看該作者
Textbook 2014goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.
29#
發(fā)表于 2025-3-26 13:25:02 | 只看該作者
Textbook 2014icated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes?routine but in many cases it borders on an art. The
30#
發(fā)表于 2025-3-26 17:52:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳区| 尚义县| 麻栗坡县| 双鸭山市| 渑池县| 无棣县| 山西省| 福鼎市| 策勒县| 姚安县| 乌兰浩特市| 辽宁省| 江油市| 灵石县| 宜川县| 静乐县| 嵊州市| 富宁县| 泸西县| 沙坪坝区| 淮阳县| 晋城| 通江县| 大荔县| 永仁县| 克山县| 宁波市| 抚松县| 大厂| 康平县| 呼玛县| 龙口市| 黄冈市| 宜昌市| 邢台市| 九龙城区| 郴州市| 南宫市| 巢湖市| 开化县| 淮滨县|