找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visualization and Processing of Tensor Fields; Joachim Weickert,Hans Hagen Book 2006 Springer-Verlag Berlin Heidelberg 2006 3D.differentia

[復(fù)制鏈接]
樓主: coherent
41#
發(fā)表于 2025-3-28 15:44:48 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:04 | 只看該作者
43#
發(fā)表于 2025-3-29 02:42:03 | 只看該作者
44#
發(fā)表于 2025-3-29 03:24:16 | 只看該作者
Higher Rank Tensors in Diffusion MRI When the rank of the tensor being used is 2, one recovers traditional diffusion tensor imaging (DTI). Therefore our approach can be seen as a generalization of DTI. The properties of generalized diffusion tensors are discussed. The shortcomings of DTI experienced in the presence of orientational he
45#
發(fā)表于 2025-3-29 08:24:15 | 只看該作者
Strategies for Direct Visualization of Second-Rank Tensor FieldsHere, we focus on the first task and evaluate integral and glyph based methods with regard to their power of providing an intuitive visual representation. Tensor fields are considered in a differential geometric context, using a coordinate-free notation when possible. An overview and classification
46#
發(fā)表于 2025-3-29 12:36:26 | 只看該作者
Tensor Invariants and their Gradients This chapter describes an anatomically-motivated method of detecting edges in diffusion tensor fields based on the . of invariants. Three particular invariants (the mean, variance, and skewness of the tensor eigenvalues) are described in two ways: first, as the geometric parameters of an intuitive
47#
發(fā)表于 2025-3-29 17:02:13 | 只看該作者
Visualizing the Topology of Symmetric, Second-Order, Time-Varying Two-Dimensional Tensor Fieldsinear singularities. The structural stability of these features and their corresponding separatrices are also analyzed. From here, we highlight the main techniques for visualizing and simplifying the topology of both static and time-varying 2D tensor fields.
48#
發(fā)表于 2025-3-29 21:29:22 | 只看該作者
49#
發(fā)表于 2025-3-30 02:14:35 | 只看該作者
50#
發(fā)表于 2025-3-30 05:23:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江山市| 邻水| 松桃| 巫溪县| 家居| 桐庐县| 社旗县| 宕昌县| 射洪县| 龙门县| 南木林县| 巴塘县| 赣榆县| 锦州市| 赤水市| 曲阜市| 济源市| 凤城市| 滁州市| 南江县| 吕梁市| 邹城市| 光山县| 香河县| 威海市| 万盛区| 丹东市| 沁源县| 密山市| 永修县| 南丹县| 九寨沟县| 香港| 锦屏县| 德阳市| 台江县| 浦县| 年辖:市辖区| 博兴县| 九江县| 寿阳县|