找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visual Reasoning with Diagrams; Amirouche Moktefi,Sun-Joo Shin Book 2013 Springer Basel 2013 diagrammatic reasoning.logic based on diagram

[復(fù)制鏈接]
樓主: Cyclone
31#
發(fā)表于 2025-3-26 23:11:07 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:10 | 只看該作者
On the Completeness of Spider Diagrams Augmented with Constants,ecific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsulating logical equivalence and logical consequence. We prove that the resulting logic is sound, complete and decidable.
33#
發(fā)表于 2025-3-27 05:24:09 | 只看該作者
What is a Logical Diagram?,ments in philosophy of mathematics and logic (e.g. Brown, Shin, Giaquinto) to take diagrams seriously—as more than a mere ‘heuristic aid’ to proof, but either proofs themselves, or irreducible components of such. However what exactly is a diagram in logic? Does this constitute a cleanly definable se
34#
發(fā)表于 2025-3-27 12:03:12 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:54 | 只看該作者
A Diagrammatic Calculus of Syllogisms,s by calculation. The calculus at issue allows the easy retrieving of the traditional rules of the syllogism and of the laws of the square of opposition. Moreover, it extends to .-term syllogisms and to syllogisms with complemented terms. In this respect, a comparison with De Morgan’s . is treated.
36#
發(fā)表于 2025-3-27 17:48:08 | 只看該作者
37#
發(fā)表于 2025-3-27 23:01:09 | 只看該作者
38#
發(fā)表于 2025-3-28 03:54:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:07:01 | 只看該作者
On the Completeness of Spider Diagrams Augmented with Constants,ical statements about set membership and containment. Here, existing work on spider diagrams is extended to include constant spiders that represent specific individuals. We give a formal syntax and semantics for the extended diagram language before introducing a collection of reasoning rules encapsu
40#
發(fā)表于 2025-3-28 13:39:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐城市| 尚志市| 诸城市| 昭觉县| 广宗县| 泉州市| 额敏县| 东明县| 获嘉县| 宜州市| 安图县| 东至县| 大新县| 广宗县| 德惠市| 仙桃市| 呼和浩特市| 盐津县| 柳河县| 衡东县| 博湖县| 宁夏| 惠东县| 西乌珠穆沁旗| 昌平区| 苏尼特左旗| 汉源县| 巴里| 龙泉市| 广德县| 盱眙县| 招远市| 淮阳县| 利川市| 遂川县| 德兴市| 宁波市| 集贤县| 乌审旗| 灵石县| 清原|