找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Vector Measures, Integration and Related Topics; Guillermo P. Curbera,Gerd Mockenhaupt,Werner J. Ri Conference proceedings 2010 Birkh?user

[復(fù)制鏈接]
樓主: SPIR
61#
發(fā)表于 2025-4-1 05:26:07 | 只看該作者
Spectral Measures on Compacts of Characters of a Semigroup,In this note we give integral representations for some *-representations of the type .:. → . where . is a commutative semigroup with involution and neutral element and . are the bounded operators of the Hilbert space ..
62#
發(fā)表于 2025-4-1 08:31:34 | 只看該作者
The Bohr Radius of a Banach Space,Let 1≤., .<∞ and let . be a complex Banach space. For each . with . we define . and denote the Bohr radius of . by . The aim of this note is to study for which spaces ..(μ) or . = .. one has ..(.)>0.
63#
發(fā)表于 2025-4-1 10:45:49 | 只看該作者
Defining Limits by Means of Integrals,A particular notion of limit is introduced, for Riesz space-valued functions. The definition depends on certain ideals of subsets of the domain. It is shown that, according with our definition, every bounded function with values in a Dedekind complete Riesz space admits limit with respect to any maximal ideal.
64#
發(fā)表于 2025-4-1 15:37:55 | 只看該作者
65#
發(fā)表于 2025-4-1 21:58:46 | 只看該作者
A Note on Bi-orthomorphisms,We show that the space of bi-orthomorphisms forms a vector lattice. The space of orthomorphisms on a semiprime .-algebra is a vector sublattice of the space of bi-orthomorphisms and an ideal in the case that the .-algebra is Dedekind complete.
66#
發(fā)表于 2025-4-2 01:44:59 | 只看該作者
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东山县| 紫阳县| 珠海市| 祁连县| 武胜县| 宁河县| 襄樊市| 武穴市| 柳林县| 巴青县| 苗栗市| 长泰县| 金沙县| 安福县| 天柱县| 克山县| 炉霍县| 黑河市| 佛山市| 和静县| 达拉特旗| 通州市| 大姚县| 景宁| 大石桥市| 徐闻县| 科技| 大城县| 砀山县| 平果县| 新源县| 军事| 定结县| 阿拉善右旗| 阿城市| 长汀县| 拜泉县| 清水河县| 含山县| 漠河县| 化德县|