找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Problems in Riemannian Geometry; Bubbles, Scans and G Paul Baird,Ali Fardoun,Ahmad Soufi Conference proceedings 2004 Springer B

[復(fù)制鏈接]
樓主: 倒鉤
31#
發(fā)表于 2025-3-26 22:15:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:12:34 | 只看該作者
33#
發(fā)表于 2025-3-27 08:05:38 | 只看該作者
Evolution by Curvature of Networks of Curves in the Planehese networks of curves is the simplest example of curvature flow for sets which are “essentially” non regular..In this paper, we introduce the problem and we present some results and open problems about existence, uniqueness and, in particular, the global regularity of the flow.
34#
發(fā)表于 2025-3-27 10:44:42 | 只看該作者
35#
發(fā)表于 2025-3-27 15:52:29 | 只看該作者
Application of Scans and Fractional Power Integrandsere first introduced in the work [HR1] of Tristan Rivière and the second author to adequately describe certain bubbling phenomena. There, the behaviour of certain .. weakly convergent sequences of smooth maps from four-dimensional domains into .. led to the consideration of a necessarily infinite ma
36#
發(fā)表于 2025-3-27 18:06:35 | 只看該作者
Bubbling of Almost-harmonic Maps between 2-spheres at Points of Zero Energy Densitythe domain at which the energy density of the body map is zero. We also see that this translates into different behaviour for the harmonic map flow. In [11] we obtained results, assuming nonzero bubble point density for certain bubbles, forcing the harmonic map flow to converge uniformly and exponen
37#
發(fā)表于 2025-3-27 22:27:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:16:51 | 只看該作者
39#
發(fā)表于 2025-3-28 06:33:18 | 只看該作者
40#
發(fā)表于 2025-3-28 12:34:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰考县| 宣威市| 桃江县| 响水县| 宜都市| 噶尔县| 平江县| 开远市| 措美县| 清镇市| 定陶县| 镇赉县| 辽中县| 平远县| 阳高县| 宜都市| 大竹县| 濮阳县| 安西县| 潢川县| 白朗县| 兴城市| 利津县| 扎囊县| 色达县| 乌兰浩特市| 公主岭市| 南部县| 青浦区| 渑池县| 大悟县| 嘉义县| 教育| 明水县| 五大连池市| 灵璧县| 威海市| 合江县| 横山县| 武夷山市| 措勤县|