找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods for Free Surface Interfaces; Proceedings of a Con Paul Concus,Robert Finn Conference proceedings 1987 Springer-Verlag N

[復(fù)制鏈接]
樓主: Harding
31#
發(fā)表于 2025-3-26 21:38:05 | 只看該作者
32#
發(fā)表于 2025-3-27 04:27:29 | 只看該作者
,Boundary Behavior of Nonparametric Minimal Surfaces—Some Theorems and Conjectures,ept possibly at (0,0), where it might have a jump discontinuity. Then for all directions from (0,0) into ., the radial limits of . exist, where . is the solution of the minimal surface equation in . or of an equation of prescribed (bounded) mean curvature in . with . and .. Some conjectures which wo
33#
發(fā)表于 2025-3-27 06:59:44 | 只看該作者
On Two Isoperimetric Problems with Free Boundary Conditions,e [25], Grüter—Jost [11], and Jost [19]. The question of boundary regularity was discussed by Hildebrandt—Nitsche [14], [15], [16], [17], Grüter—Hildebrandt—Nitsche [9], Dziuk [3], [4], Küster [20], and Ye [26]. Various regularity theorems are optimal, although several questions are still open. A su
34#
發(fā)表于 2025-3-27 11:35:42 | 只看該作者
35#
發(fā)表于 2025-3-27 14:30:23 | 只看該作者
36#
發(fā)表于 2025-3-27 19:49:19 | 只看該作者
,Convex Functions Methods in the Dirichlet Problem for Euler—Lagrange Equations,s. Such problems arise from the relativity theory and continuous mechanics and can be described in terms of variational problems for the .-dimensional multiple integrals . whose integrands .(., ., .) are defined only for vectors . belonging to prescribed domain . in ... If . coincides with the whole
37#
發(fā)表于 2025-3-27 22:12:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:53 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:09 | 只看該作者
40#
發(fā)表于 2025-3-28 10:30:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
即墨市| 娄烦县| 青河县| 平远县| 青海省| 墨竹工卡县| 孝昌县| 航空| 通州市| 阆中市| 青龙| 修文县| 灵寿县| 南京市| 通城县| 米易县| 正安县| 彝良县| 安西县| 岳普湖县| 忻城县| 平罗县| 大荔县| 苍溪县| 宜昌市| 景宁| 海南省| 泰宁县| 新乐市| 秀山| 青田县| 诸城市| 泗阳县| 军事| 西华县| 巴马| 安远县| 三河市| 桃源县| 博乐市| 德清县|